

ww-004 For further details

Hameg the mame for quality, performance and value in DSCILLOSCOPES. Advanced design optimising the use of both integrated circuits and Just make you want to kmow more thart will

HM 307
Single Trace DC-10 MHz, $5 \mathrm{mV} / \mathrm{cm}$ Plus built in Component Tester Dual Trace DC-20 MHz, $5 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm} 8 \times 10 \mathrm{~cm}$ Display
Dual Trace DC-20 MHz, $2 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds $40 \mathrm{~ns}-2 \mathrm{~s} / \mathrm{cm}$ and Sweep Dual Trace DC-50 MHz, $5 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds $20 \mathrm{~ns}-5 \mathrm{~s} / \mathrm{cm}$ plus Sweep Delay
HM 812
Dual Trace DC - $\mathbf{5 0} \mathbf{M H z}, 5 \mathrm{mV} / \mathrm{cm}$ $20 \mathrm{~ns}-5 \mathrm{~s} / \mathrm{cm}$, Sweep Delay and Storage

We may be a new name to you, but each instrument is backed by over 21 years experience in oscilloscopes.

All prices UK list exc. VAT.

WRELESS wort Jantar

DON'T GAMBLE WITH PERFORMANCE BUY
 LEVELL OSCILLATORS

FREQUENCY $\quad 1 \mathrm{~Hz}$ to 1 MHz in 12 ranges. aCCURACY SINE OUTPUT distortion $\pm 1.5 \% \pm 0.01 \mathrm{~Hz}$ up to 100 kHz . $\pm 2 \%$ up to 1 MHz . $20{ }_{\mu} \mathrm{V}$ with Rs $=$ -0.05% from 50 Hz to 15 kHz , $<0.1 \%$ from 10 Hz to $50 \mathrm{kHz}<0.2 \%$
from 5 Hz to $150 \mathrm{kHz},<1 \%$ at 1 Hz and
square output
TG200D, DM \& DMP only, 7V peak
down to $<200 \mu V$. Rise time $<150 \mathrm{~ns}$.
$<1 \mathrm{~V}$ r.m.s. sine in phase with output
sync output SYNC INPUT
METER SCALES SIZE \& WEIGHT 1 \% freq. lock range eper ovot rimp.s.
G200M. DM \& DMP only. $0 / 2 \mathrm{~V}$. $0 / 7 \mathrm{~V} \&-14 /+6 \mathrm{dBm}$. 4.3 kg with
$260 \times 130 \times 180 \mathrm{~mm} .4$. batteries.
TG200 TG200D TG200M TG200DM TG200DMP
£92 £99 £115 £120 £125

FREQUENCY
ACCURACY
SIIE OUTPUT
DISTORTION
square output
METER SCALES
SIZE \& WEIGHT
$3 \mathrm{H}_{2}$ to 300 KHz in 5 decade rang
increasing to $\pm 3 \%$ at 300 kHz .
 $<0.2 \%$ from 50 Hz to 50 kHz .
$<1 \%$ from 10 Kz to 20 kHz .
25 V . 2.5V peak down to to $<200 \mu \mathrm{VHz}$.
2.5V r.m.s. sine. 2.5V r.m.s. sine.
$0 / 2.5 \mathrm{~V}$. 10 dB on
G 152 DM.

. | TG |
| :--- |
| $\begin{array}{l}\text { TGO } \\ \text { batteries. }\end{array}$. $30 \times 180 \mathrm{~mm} .3 .4 \mathrm{~kg}$ with |

TG152D
TG152DM
${\underset{c}{\text { Without }}}_{\substack{\text { meter }}}^{\text {E }}$
With
meter $\& 92$
FREQUENCY $\quad 0.2 \mathrm{~Hz}$ its 1.22 MHz on four decade
accuracy
SINE OUTPUT
DISTORTION
METER SCALES
SIZE \& WEIGHT +0.02 Hz below 6 Hz . 00 kHz
$+0.3 \%$ from 6 Hz to 100 Hz .

$+1 \%$ from 100 kHz to 300 kHz .
$+3 \%$ above, 300 kHzz
5 V r.m.s. down to $30 \mu \mathrm{~V}$ with Rs $=$ $<0.15 \%$ from 15 Hz to 15 kHz .
$<0.5 \%$ at 1.5 Hz and 150 HHz . $<0.5 \%$ at 1.5 Hz and 150 kHz .
2 Expanded voltage and $-2 /+4 \mathrm{dBm}$
$260 \times 180 \times 180 \mathrm{~mm} .54 \mathrm{~kg}$ TG66B $\quad 260 \times 180 \times 180 \mathrm{~mm} .5 .4 \mathrm{k}$ TG66A

For FULL Details please contact
HAMEG Limited 74-78 Collingdon St. Luton, Beds. LU1 1RX Tel: (0582) 413174 UK Subsidary of Hameg K Hartmann KG

LEVELL Eiectroncs ito.

MOXON STREET, BARNET, HERTS., EN5 5SD. TEL: 01-449 5028/440 8686

 wave! Learn to program Millions of jobs are program
will be created through the med, but millions more revolution. Will YOU sink or swim? Be one people who welcomes computers and the end of boring jobs.
-the language of thputers and the end of easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance
step-by-step to real proficiency-know-by-step to real proficiency- all you need to start with is a
knowedge of simple arithmetic and the use of decimals. And your don't need a computer. This unique corse comes as four $A 4$ books, written by three
authors well-known in the fields of microcomputing, self instruction and writing clear English. In 60 straightforward
lessons you learn the five essentials flowcharting, ooding the epssentials, problem definition, debugging, and preparing
flear documention clear documentation.
Every issue has thought-provoking questions and mindless drudgery. You will know that you are mastering the
material and foel miteria and feel a rare satisfaction. Harder problems are provide approach. So you never sit, glassy eyed with your mind a blank
First time through. you mia you will soon learn to tackle tough programming the hints, bu writing programs for computer games, preparing gaskephs such as
outpun pronter, calculating compound interest tables and
estimating costs.

COMPUTER PROGRAMMING IN BASIC $£ 7.50$
at hey do well: READ, DATA. PRINT, Poners, bracker

THE BASIC HANDBOOK £11.50 This best-selling American title usefully supplements our BASIC
course with an alphabetical guide to the many variation ccur in BASIC terminology. The dozens of BASIC 'dialects' use today mean programmers often need to translate instructions lear, easy to use and sh shitir system. The BASIC Handbook is computer time. A must for all users of BASIC throughout the

FORTRAN COLORING BOOK £5.40 If you have to learn Fortran (and no one actually wants to
assimilate it for the good of the soul) buy this book. Forget the
others - this one is thers - this one is so good it will even help you understand the A.N.S. COBOL $£ 4.40$

Covers the most widely $\mathbf{~ u s e d}$ computer language in business
today. It teaches how to write a COBL effactitevely paying proper attention to spelling, punctuation, and
format.

THE ALGORITHM WRITER'S GUIDE £3.75
FLOW CHARTS \& ALGORITHMS help you present; safety procedures, government legislation, officice proceentures. , teach hing
materials and computer programs by means of YES and NO Thswers to questions.
The Algorithm Writer's Guide
explains how to: define the questions, put them in the best order
and draw the flow chart, with numerous examples shown. All tha and draw the flow chart, with numerous examples shown. All that
students require is an aptitude for logical thought. Size: A5, 130
pages This book is MUST

Cambridge Learning Enterprises

Understand Digital Electronics In the evars ahead the products of digital electronics technology mill play an important part in your life. Calculators and digital
watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone
which would automatically look up their number and dial it for
You These courses were written by experts in electronics and These courses were written by experts in electronics and
learning systems so that tou could teach yourself the theory
and apoplication of digital logic. Learning by self-instruction has learning systems so that youcould Learning by self-instruction hat
and application of digital logic
the advantages of being faster and more thoroughthan he advantages of being faster and more horoge and must
classroom learning. You work at your own pace classroom beanswering question
respond
information before proceeding.
information before proceeding.
After completing these courses you will have broadened your After completing these courses you what have broadened your
corer prospets and increased your fundamenta understanding
of the rapidly changing technological world around you.

DIGITAL COMPUTER LOGIC

 AND ELECTRONICS $£ 7.00$Digital Computer Logic and Electronics is designed for the beginner. No mathematital knowledge other than simple
arititmetic is assumed, theugh the sudent should have an aptitude for logical thought. It consists of four volumes- each
A4 size - and serves as an introduction to the subject of digital A4 size - and serves as an introduction to the subject of digi,
electronics. Everyone can learn from it- designer, executive,
scientist, student. engineer. elecitronics. . Everyone can
scientist, student, enginee
Sysiems.
 DESIGN OF DIGITAL SYSTEMS £11.50
Design of Digital Systems is written for the engineer seeking
to learn more about digitital electronics. Its six volumes - each A4 lo learn more about digital electronics. Its six volumes - each AA size are packed with information, diagrams and questions
designed to lead you step-by-step through number systems and
Boolean algebra to memories counters and simple arithmetic Boolean algebra to memories, counters and simple arithmetic
circuits, and finally to a complete understanding of the design nd operation of calculators and computers. Contents include
Book 1 Octal, hexadecimal and binary uumber systems: conversion between number
systems; representation of negative numbers; complementary systems; binary

O-LEVEL ENGLISH LANGUAGE

 $£ 7.00$More and more jobs require a C-GRADE PASS, and over
250,000 people fail to get this very year. Will one of them be in
your family? This new course, written by experts in a style your family? This new course, written by experts in a style
that's serious yet fun to read, shows you how to mark your
 exam year Set your own pace and assess your results
immediately with no postal delays: watch your speed and immediately with no postal delays: watch your speed and
standards impove. In Book 1 learn how you will be marked on
COMPREHENSION, Book 2 covers SUMMARY. PUMPREHENSION, BoEkLING, and Book 3 coaches you in the principles
pages.

SELF-INSTRUCTION COURSES

CAMBRIDGE LEARNING ENTERPRISES, UNIT 36,
RIMERMILL SITE FREEPOST, ST.IVES, HUNTINGDON CAMBS PE17 4BR, ENGLAND.
TELEPHONE: STIVES
All prices include worldwide postage (airmail extra)
If order comes to $£ 15$ or more, deduct $£ 2$ GUARANTEE No risk to
If you are not completely satisfied your money will be
refunded. When books are returned in good condition.
Please send me the following books:
-.... Computer Programming in BASIC (4 books) at $£ 7.50$ The BASIC Handbook at $£ 11.50$
FORTRAN Coloring Book at 55.40
A. N.S. COBOL an 44.40
.....Algorithm Writers Guide at $£ 3.75$
7.Dinital Computer Logic $\&$ Electronics (4 books) at
$£ 7.00$
..... Design of Digital Systems (6 books) at $£ 11.50$
... Level English Language (3 books) at $£ 7.00$ renclose a *cheque/PO payable to Cambridge Learning
Enterorises for E.
 Diners Club Account no
Signature.
orders from credi......" card holders accepted on Telephone orders from credit card holders accepted on
O480-67446 (Ansafonel. Oeverseas customers linc. Eire) should send a bank draft in sterling drawn on a London. Bank, or quote

Name
Address

In future, recording the present will be a thing of the past.
 What's past is past. And said to be best forgotten. But it's fundamental to the very eristen

replay a selected portion of tape to find out what was said by who recording to be able to And 'when' can be vital. Equally vital, particularly in emergencies when every second counts, is the ability to
obtain such replay access rapidly precisly aytomatically obtain such replay access rapidly, precisely, automatically. With absolute certainty - and
without time-consuming multiple knob-twiddling aided by Racal Recorders has recognized this need and prod by guesswork.
specifically for its ICR range of multi-channel communications recorders-and providing just these facilities.
TIMESEARCH can generate a coded time reference signal of crystal accuracy and speed for a pre-selected time signal and automatically initian search a tape at high In communications recording, the future becomes the present; thy at that time. the past. And when you need to recall the past with precision, you need TIMESEARCH.

And for providing precise time signals
every 10 seconds for recording onto magnetic tape: the International
Timing Unit. Timing Unit. Racal Recorders always on the right track

THE CNILE SIVUSOIDAL FREQUENCY AND VOLIAGE STABHLIEER

applications
*SOUVDRECORDING * VD:ORECORDING * mellal

* MARIVE
* coupurizs
a Mivicitional systems

Applications for the USE of CINTEC
FREOUENY \& VOTAGE STABLILRER are,
more numerous than can belisted Therefore if
you have a suply problem contact CINTEC more numerous than can be listed. Therefore, if
You have a supply problem contat CIITEC
LIMITED whose YOu have a suppe
LiMTED whose en
pleased to assist.
SPECIFICATION

* 500VA OR 250VA
* SOLID STATE
* HIGH STABILITY
* ROBUST
* VERSATILITY
* RELIABILITY
* SINUSOIDAL

Reliable Frequency \& Voltage Stabilization The efficent operation of sophisti--
cated electrical and electronic equipment is, in many instances, dependent upon an electrical supply which is stable in both frequency and voltage.
In many countries and even in the United Kingdom during periods of heavy demand, the variation in the frequency and voltage is sufficient to
introduce errors and the malfunction of such items as Recording equipment etc. Likewise, in certain areas, the only source of supply is from a Generator, the output of which can vary considerably when different
loads are imposed. This has precluded the use of a wide range of equipment in many countries. Voltage Stabilizers are readily available but these do not
stabilize the frequency of the supply which, in many instances, is essential.
rating 500VA or 250 VA

WAVEFORM
Amb temp.
Amb temp
cooling
Dutr
DIMENSIONs
dimensions
WEIGHT
constru
construction
TERMINATION NATO CODDIFED
$24 V$ DC Inverter
24 V . inverter
In addition to the A.C. operated models, a 24 v
D.C. INVPTC
In addition to the A.C. operated models, a 24 v
D.C. INVERTER Stabilizer is available which
operates from a heavy duty 24 volt haterer and operates from a heavy duty 24 volt battery and
has output ratings similar to the A.C. models.
This has output ratings similar to the A.C. models.
This type of Stabilizer is particularly suitable for converter. For example, the supoly to it can be be
anv any frequency between 45.65 Hz and the
output can be swithe

 WW-019 FOR FURTHER DETAILS

A professional printer-within your reach!

The M80-MC 80 column printer from Mannesmann Tally

Higher reliability, longer life, faster operation ...that's the M80-MC.
It may cost just a little more than some "personal computer' printers, but it offers a whole lot better value.
When other cheaper printers come to a halt in the middle of a heavy work load, the Mannesmann Tally Mi-directional printer which is based on micro processor electronics-hence the low price.

* 80 column, 200 c.p.s., bi-directional, 7×7 matrix (64 character U.K. set).
* Industry standard parallel interface-compatible with all popular microcomputers.
* Simple DIY installation.
* Only $£ 995$ + VAT (includes Securicor delivery). factory); fixed price repair service thereafter.
* Field service agreements available from our own
nationwide maintenance organisation.
* Options include:- 16.5 c.p.i. condensed print Applications assistance is only a'phone call away.
M MANNESMANN (W) TALLY

数 IEA-ELECTREX

International Electrical Electronic and Instrument Exhibition
 ove inustri,.000 different extibiting companies covering just

Eddystone EC958/7 for arduous environments

This ruggedized version of the famous Eddystone 958 Series of high-grade professional receivers is fitted with anti-vibration mounts and drip-proof cowl. It covers 10 kHz to 30 MHz , with 1 Hz digital readout and 4 Hz stability under rigorous conditions of service This receiver is ideal for genera communication use, network monitoring, surveillance, military, It is also avaipborne installations. for also available in standard

Eddystone Radio Limited
Member of Marconi Communication Systems Limited
Alvechurch Road, Birmingham B31 3PP, England
Telephone: 021-475 2231 Telex; 337081
GEC-Marconi Electronics Company

006 FOR FURTHER DETAIS

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

 WE NOW OFFER THE WIDEST RANGE OF SOUND PRODÜCTS -STEREN
 PRE-AMP KIT

1.0.2.0.0.0.0. testing...testing testing

Avo produce an impressive range of servicing instruments for on-site and work-bench use.

1. There is the tried and tested Avometer 8 , with overload protection and a robust centre-pole movementresisting all the knocks of on-site work. It is just one of a complete range of portablemultimeters.
2. Then there is the Avoscope A101, a portable, mains operated dual channel 10 MHz oscilloscope-a low cost instrument offering an accuracy of $\pm 5 \%$ that is simple to use.
3. Also, Avo offera choice of AM or AM/FM Signal Generators with variable outputs, providing . accurate repeatable attenuation.

Avo quality is built on many years of experience. If you'd like more detailed information about the range, contact your nearest Avo Appointed Distributor, or ask Avo.

AvoLimited,
Archclifferoad, Dover
Kent CT179EN
Tel: 0304202620 Telex: 96283
1 mer veswerents Comporents Divison
You'll never meet a better meter

SCIENCE
PACT
The invention of the silicon chip by Texas Instruments, turned science fiction into scieince fact overringht. That wasa in 1966 , bu
only now is the full potential of the 'chip' being realised. nly now is the full potential of the 'chip' being realised. and development in the form of data and reference books tha will enable you to get the very best from their micro-miracle.
Whether it's your business or hobby, anyone interested in
icro-technology will find these books invaluable mer--technology will find these books invaluable.
Get the real facts from the inventors of the 'chip:

Texas instruments

Texas Instruments Ltd, Supply Division, MS21, Manton Lane, Bedford Tel: 023467466 Slough: 186 High Street, Slough, Berks. Tel: 075370531 Manchester: Knightsbridge Mall, Arndale Centre Market Street, Manchester. Tel: 061-832 6238

4-DICIT DDD'S FOR LCD'S. SMARTER.CHEAPPR. MONOHTHIC. FROM INTERSIL.NATURALH.

DOWN GOES THE COMPONENT COUNT As a leader in monolithic Display Decoder Drivers (DDD), Intersil pioneered the "Driver on a Chip." But, we're not resting on our laurels. We're making ICM 7211 (LCD) and ICM7212 (LED) Dis Decoder/Drivers are two good examples. Display
ONE CHIP FROM LOGIC TO DISPLAY
The ICM7211 is simply the best 4 -digit LCD driver available today. $\mu \mathrm{P}$-controlled or multiplexed BCD input. Hexadecimal ($0-9$, A B, C, D, E, F) or Code B ($0-9,-, \mathrm{E}, \mathrm{H}, \mathrm{L}, \mathrm{P}$, BLANK). It requires no external logic to drive four digits. The segment outputs of ganged chips can be directly slaved to the backplane. And, a complete on-board backplane oscillator eliminates the need for any external components. LED Displays? Specify the ICM7212 for non-multiplexed LED display and get a brightness control with a single potentiometer, no RF interference, and typically 8 mA DC per segment at full brightness.

LOW POWER CMOS DDD'S.

Today, Intersil offers a complete family of counters, timers and display drivers in low-power MAXCMOS". Monolithic circuits that reduce your component count, power requirements and design time. At a cost that helps you think CMOS
COMPARE PRICE AND PERFORMANCE.

| order part number | $\begin{array}{c}\text { OUTPUT } \\ \text { CODE }\end{array}$ | $\begin{array}{c}\text { IINPUT } \\ \text { CONIGURATIONS }\end{array}$ | Price* |
| :---: | :---: | :---: | :---: | :---: | | | ICM2111PL | Code | CONFIGURATIONS | PRICE |
| :--- | :--- | :--- | :--- | :--- | | |
| :--- | :--- | :--- | :--- |

 COUNT ON US.
Whatever your display or counting problem, there's probably a better, simpler solution available from Intersil. For complete information on the ICM7211/ 7212, call your Intersil Sales Office, Franchised Distributor, or, return the coupon below.
U.K. SALES OFFICE
intersil, Snamprogetti House, Basing View
Basingstoke RG21 2EE, Hants.
U.K. DISTRIBUTORS

Macro Marketing Ltd. 396 Bath Road, Slough, Berks.
Tel: Burnham 63011
Tranchant Electronics (U.K.) Ltd. 61-63 London Road Redhill, Surrey. Telephone: Redhill 69217 Telex: 8953230 TRELEC G Rapid Recall Ltd. 46 -50 Beam Street, Nantwich, Cheshire CW5 5LJ. Rapid Recall Ltd. Soho Mills Industrial Park, Wooburn Green, Buck Rapid Recall Lrd. Sono Mille 1 Rex 844439
Tel. Bourne End 24961 Terk,
Andis Components Ltd. Etwall Street, Derby. Tel: Derby 363296

ww

[NIMER ${ }^{5}$ IL
Intersil, Snamprogetti House, B
Basingstoke RG21 2EE, Hants.
Basingstoke RG21 2EE, Hants.
Send me everything ''ll need to Send me everything r'11
ICM7211/7212 DDD's.

Send me literature on your family of
display driver/counter/timer circuits.
Name
Company
Address

Address

[^0]

[^1]而

ELEGTROVILUE
 catalogue 10
 Ready early December

Our computer has already selected thousands of our customers to whom our new catalogue has automatically been sent. If you would like a copy too, simply send us your name and address. It's

FREE

(You don't even have to pay postage)
it' a good deal better fromelectrovalue

- We give discounts
on C. W.O. orders, except for
a few items market Net or N
a few items marke
in our price ists.
5% on orders, list valu
10\% on orders list value
Not apppicarllo or Are. Access or
Barclaycard purchase orders.
U. We pay postage in
U.K. W. .O. orders list value
on C.
£5. over . If under, add
30 handling charge

OUR NEW
OUR NEW CATALOGUE
Over 120 pages. Thousagds No 10
classification for easier selection. Valuable work

ELECTRONALUE LTD

HEAD OFFICE (Mail Orders)
88G) St. Judes Road, Englehard Green, Egham, Surrey
TW20 OHB. Phone: 33603 (London prefix 87 . STD 0784) Telex 264475.
NORTHERN BRANCH (Personal Shopers OnI
680 Burnage Lane, Burrage, Manchester M19 1NA
Phone: (061) 4324945 .
wW - 013 FOR FURTHER DETAILS

Everyone who works with electricity needs to know at some time or other what's going on inside the cable he's handling. What voltage. What current. What resistance. Not knowing the answers, or worse still having inaccurate answers, can make life difficult, even terminal Eagle Test Equipment gives the right answers
The range covers general multimeters, high voltage probes, clamp meters, insulation testers.
Here are just four. Send the coupon for details of all the rest.
 KEW 7 Multimeter
1000 OPV. DC volts up to 1000,
DC amps up to $100 \mathrm{mA.AC}$ volts up to 1000 . Resistance volisup to
to 50 Kohms. Poscket sizee
"Off" damping. Complete "OIf" damping. Complete with
"eads \& battery. R.R.P. $£ 6.95$
ex. VAT.

EM 1200 Multimeter 100,000 OPV. Taut band
movement Overload movement. Overload
protection. Reversible DC
polarity. AC amps. $15 . \mathrm{AC}$ polarity. $A C$ amps: $15 ; A C$
viltst 1500. . $A C$ amps up to 15 , DC volts. to 1500 .
Resistance up to 200 Resistance up to 2000
megohms. R.R.P. £4995

K 1400 Multimeter
$20,000 \mathrm{OPV}$. DC an 20,000 OPV. DC and $A C$ volts
up to 5000 . DC and $A C$ amps up to 500. DC and AC amps
up to 10 . Resistance up to 20
megohms "Oft" megohms. "Oft" damping.
Overload protection. R.R.? £79.35 ex. VAT.

EM10, 20 \& 30 Multimeters $10,20 \& 30,000$ OPV. All with antiparallax
mirror scaie. DC volts to 1000 (1200 for mirror scale. DC volts to 1000 (1200 for
EM30). DC amps to $250 \mathrm{~mA}(600$ for EM33. AC volts to 1000 (1200 for EM30).

TestEquipment: EAGLE FF

Please send me details of your complete range of Test Equipment.
Name Company
y

Address
EAGLE INTERNATIONAL Preacision Cente Heatarer Park Dive,

THENEWPILSHOWROOM

Pil are pleased to announce the official opening of their new 1500 sq. ft. showroom to the public Offering a range of some 350 electrical measuring instruments manufactured by around 60 manufacturers, both British and international.

Pil can cater for practically every electrical measurement problem for any user on an ex-stock/short delivery basis. The showroom facilities and its technical back-up are available to everyone from export

Factory/Repairs $01-6390155$
North London Showroom 01--965 2352

AN IEC GROUP
COMPANY
houses and overseas users, buyers engineers, to do-it-yourself enthusiasts and hobbyists.

Instruments Electrical the service and calibration division can provide full guarantee facilities as well as offering their normal repair and calibration service. For an immediate solution to our instrument problems, contact the Instrument Group at
Instrument House
Showroom/Sales/Export 01 -639 4461
Open Mon. to Fri. (ring for Sat. opening times)

```
INSTRUMENT HOUSE,727 OLD KENT ROAD,LONDON SE15
    TELEPHONF:O1-6394461 TELTX888H1854(INSTEL)
```


Topvalue testequipment fromTANDY

Measure Resistance to 0.01Ω
At a Price that has no resistance at all New/Elenco : freision Digital Multimeter M1200B

ONLY £55

YOUR OPPORTUNTTY TO
BUY THIS SUPERB
STO DMM AT THIS PR
FORA LMTED
PERIOD ONIY FOR A LIMITED
PERIOD ONLY.
FOULV GUARANTEED
for Y YEARS METALCASE
EX STOCK DELVERY

THE ULTIMATE IN PERFORMANCEVOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE! FEATURES

- $3^{1 / 2}$ digits $0.56^{\prime \prime}$ high LED for easy reading
- High input i $100 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High acsuracy achieved with precision resistors
- not unstable trimpots

200 mV scale to 600 V)

- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery
operation-built-in charging circuitry for NiCads
- Overrange indication

Hi for power ohms, Lo for resistors in circuit, Hi for diodes

SPECIFICATIONS:	
DC Volts	Fiange $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ Accuracy $1 \% \pm 1$ digit, Resolution .1 mV
AC Volts	Overload protection 1,000 volits max
	Range 200 mV , 2V, $20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ Accuracy 1.5% digits Resolution 1 mV
DC Current	Overload protection 1000 V max, 200 mV scale 600 V
	Range $\mathbf{2 m A}, 20 \mathrm{~mA}, \mathbf{2 0 0 m A}, 2 \mathrm{mp}$. Accuracy $1 \% \pm 1$ digit, Resolution 1 Microamp
	Overload protection -2 amp fuse and diodes
AC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{amp}$ Accuracy $1.5 \% \pm 2$ digits, Resolution 1 Microamp
Resistance	Overload protection -2 amp fuse and diodes Range $20.200,2 \mathrm{~K}$
	Accuracy $1 \% \pm 1$ digit, Resolution 01 ohms
Environmental	Temp coefficient 0^{\prime} 'to $30^{\circ} \mathrm{C} \pm .025 \%^{\prime \prime} \mathrm{C}$
	Operating Temp 0° to $50^{\circ} \mathrm{CStorage}-20^{\circ}$ to $80^{\circ} \mathrm{C}$
	${ }_{4} \mathrm{C}$ size batteries (not supplied)
	Size $81 / \times 5 \% \times 21 / 4 \quad$ Weight $21 / 1 \mathrm{lbs}$.

I Name
Address
$\|^{\text {Address }}$
 Also avaiable from ELENCD PRECIIION Sole UK Distributor retail shop:
AAdio EEocronices
301

Tolephone:
O1-724 356
(C) N Zand $\begin{array}{ll}\text { Tel. 01-837 1165 }\end{array}$
(C) N Zand $\quad \begin{aligned} & \text { Tel. } 01-8371165 \\ & \text { Telex. } 8953084 \text { MACLING }\end{aligned}$

NEW UNBEATABLE 1980 PRICES NOW! EXPLORER / 85

ww - oos For further details
METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-14$
days delivery. Oher. Ranges and days delivery. Other Ranges and
special scales can be made to order.

Full Information from

HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
ww - 026 FOR FURTHER DETAILS

ww - O40 FOR FURTHER DETAILS

FEATURES INTEL 8085 CPU

 WITH ON BOARD S-100 EXPANSIONFLEXIBILLTY: Real flexibility at LAST. The EXPLORER / 85 features the Intel 8085 cpu 100%
compatible with all 8080 A and 8085 software. Runs at 3 MHz . Mother Board (Level A) with 2 S-100 pads
MEMORY
2K Monito
MEMORY
2K Monitor RON
4K WORSPAC
4K WORKSPACE/USER RAM
1 KV Video RAM
8K Microsoft BASIC in ROM or Cassette
INTERFACES
£275 + VAT
INTERFACES
STANDALONE
STANDALONE FULL ASC11 Keyboard Terminal, $32 / 64$ characters per 16 lines
RS-232/20Ma LLoop. 4, 8 biti: 1 , 6 bit $1 / 0$ ports, programmable 14 bit binary counter/timer.
Direct interface for any $\mathrm{S}-100$ Board.
FULL Butfering decocing for S-1000n Bus pads, wait state generator for slow memory.
Each stage has separate 5 V 1 A regulator for improved isolation and fred
Each stage has separate 5 V 1 A regulator for improved isolation and freedom from cross talk.
P.S.U. requirements: $8 \mathrm{v}, 6.3 \mathrm{~V}$ AC.

EXPLORER/85 is expandable to meet your own requirements with easy to obtain S-100
peripherals. peripherals.
EXPLRRER $/ 85$ can be purchased in individual levels, kit form or wired and tested. OR as a
package deal as above.

Microsoft BASIC on Cassette

£295 + VAT
Microsoft BASIC in ROM

AVAILABLE NOW!

Carston Electronics

Oscilloscopes
TEKTRONIX 465
DC-100MHz Dual Trace 5 mV -5V/ Div
$0.05 \mu \mathrm{~s}-0.5 \mathrm{~s} /$ Div Delayed T/BXY DC $\quad \mathrm{f} 1200$

TEKTRONIX 475A
DC-250MHz Dual Trace $5 \mathrm{mV}-5$ XY DC 3 MHz $0_{0.01 \mu \mathrm{~s}-0.5 \mathrm{~s} / \text { Div Delayed T/B XY } \quad £ 1950}^{\mathbf{1}}$

THESE INSTRUMENTS SOLD WITH ONE YEARFULL GUARMNIEE

 Contad Dainkemedy 01-2675311/2

Redundant
Test Equipment Test Equipment
Why not turn your under-utilized Why not turn your under-utilized
test equipment into cash ? Ring

A new edition of a Newnes-Butterworths classic
Radio and Electronic Laboratory Handbook Ninth Edition
M. G. Scroggie
assisted by G. G. Johnstone
First pubfisteed in 1938, and now recognised as a standard work in its field
Covers every aspect of modern electronic laboratom nactice
Many new tachniques are included for the first time Pnd the subject of filters has been expanded

* Includes chapters on the general principles of measurement and laboratory practice including interpretation of results, methods of measure omprehe reference sectio Describes the use of integrated circuits and digital instrument
1980 608 pagés £17.95 (US $\$ 40.50$) Newnes-Butterworths Barouth Geren, Sevenoaks, Kent TN15 8P
\square terworths has companies in Australia, Canada, New
and, South Africo and the USA, where local prices

EMC/R.F.I.

 INSTRUMENTATION6-8 WEEKS DELIVERY FULL AFTER-SALES SERVICE

- ELECTRO-METRICS Interference Analysers $20 \mathrm{~Hz}-40 \mathrm{GHz}$) CISPR/VDE/ANSI/MIL-STD 461/2.
- HIRE: A wide range of equipment available.
- FISCHER CUSTOM COMMUNICATIONS Cur$\underset{\text { (12 weeks delivery) }}{\text { rent }}$ - Spikeguard Suppressors
- aEritalia Electric and Magnetic field sensor system
- CONTACT:

Electro-Metrics Services Ltd. 'Coach House' 84 Tilehouse St Hitchin, Herts.

ELECTRO-METRICS SERVICES LTD

STRUMECH ENGINEERING ELECTRONICS DEVELOPMENTS

$\star \star \star$ BUSINESS $\star \star \star$ EDUCATION $\star \star \star$ $\star \star \star$ RESEARCH $\star \star \star$
 32K-56K RAM - DUAL MINI DISKS [56K RAM-DUAL8"DISKS-10MgDISK

seed system one prices from $£ 1500-£ 2500$ NEW-FORTRAN £80

seed system 12 prices from $£ 4500-£ 12000$

Suppliers of equipment to: Leading Universities, H.M. Government, Hospitals, Schools, Colleges and Small Business

SEED - STRUMECH - PORTLAND HSE. - COPPICE SIDE - BROWNHILLS WALSALL
wW - OT6 FOR FURTHER DETAIS

the indispensable

THRULINE WATTMETER
$0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts
The Standard of the Industry What more need we say. .

Exclusive UK representative
electronics limited KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9 UR

The King of

Valves

Genuine Gold Lion valves - hand uilt, utilising advanced pumping techniquespecification - re you answer to the high quality sound demands made by musicians and Gold Lion KT 77 's and KT88's
Gile. covering $30-200$ watts, are now available from M -OV along with data and distribution details. Find ut all about the King of Quality from M-OV
(m) Trade Mark of M-OV Audio Valves

MOV

sec

Thenew Toolrange catalogue

still the only catalogue of itskind

The New Toolrange Catalogue is still the only comprehensive single source of electronic tools and production aids. The product range has almost doubled The product range has almost doubled
since last year and now over 2,000 tools, since last year and now over 2,000 tools,
toolkits and service aids are illustrated in toolkits and
Products from over 100 top manufacturers are available from stock.
Over 60,000 catalogues are now in circulation. If you don't have one simply write, telephone or telex Toolrange for your free copy.

$\underbrace{\text { U }}_{\text {Upton Road, Reading, Berks. RG3 4JA }}$

WIRELESS WORLD, JANUARY 1980

100 HV -IV Sin/Square RIAA Output

 6 Digit Frequency Display from input ofoutput
100 V -1 100 V FSD Millivoltmeter
1% Accuracy 1\% Accuracy
1 Hz -200 KHz Bandwidth Ulira low-power operation from single
PP9 battery or optional mains adaptor 1.H2 $3 .-10 \%$ Hz FD DIN Weig
Mean or DIN Ouasi Peak NOISE CCIR/ARM
DIN Adio Band
DIN Rumble A and DIN Rumble A and B
Other Weightings Available DIN or BNC connectors

A major exhibition of computers, peripherals, terminals and services, held each spring in the most highly industrialised area of Western Europe. OOvDE LURDPE 80

Centre International Rogier, Brussels, May 6, 7 \& 8, 1980

The ever-growing international attendance gives Compec Europe exceptional status as a sales platform for providers of hardware, software and services from every country. Ensure participation in its benefits by posting the coupon below.

ww-036 FOR FURTHER DETALLS
 pricelist of the Bearcats.

Name
Address.

1811 KR Akmaar Telefoon 072-124416./1/128
WW -053 FOR FURTHER DETALS

Electronic Tubes Semiconductors

For use in Professional Equipment

Exceptionally wide range of spares for most equipment in use

WW - Q82 FOR FURTHER DETAILS

747 UNIVERSAL COUNTER TIMER £175 + £3.50 p\&p
$\begin{array}{ll}\mathrm{DC}-150 \mathrm{MHz} & \text { Measures - A KHz, } \mathrm{C} \mathrm{MHz} \text {, Period } \mathrm{A}, \\ \text { Pulse Width } \mathrm{A} \pm, \text { Time } \mathrm{A} \pm \text { to } \mathrm{B} \pm \text { Count }\end{array}$ 8 DIGITS 8 FUNCTIONS Pulse Width $A \pm$, Time $A \pm$ to $B \pm$, Count
A, Count A (gated by B, reset by C) Max. resolution $0.1 \mathrm{~Hz}, 100 \mathrm{pS}$. Averages 1 to 1000 events. 3 channels

Also available - Counter Timers, Frequency Meters, Filter Oscillators, Function Generators, Off-air Standards,
Bench Power Supplies, Panel Meters \& Bar Indicators.

OMB ELECTRONICS riverside, Eynsford, Kent DA4 0A Prices, which are CWO \& ex -VAT, are correct at time of going
subiect to change without notice.

THINKOFA SHAPE

Whatever it is, the

 of power amplifiers will handle it
 driving, variable frequency power supplies and servo motor systems.

S500D
Dual Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500w r.m.s. into 2.5 ohms per channel 900 w r.m.s. in bridge mode DC-20 KHZ at full power
0.005% harmonic distortion (typical) at 300 w r.m.s. into 4 ohms at 1 KHZ 3 KW dissipation from in-built force cooled dissipators

S 250D

Single Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms
Retro-convertible to dual channe DC-20 KHZ at full power
Full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

fact:
 you can choose your microphone to enhance your sound system.

Shure makes microphones for every imaginable use
Like musical instruments, each different type of Shure microphone has a distinctive "sound," or physical characteristic that optimizes it for
particular applications, voices, or effects.
Take, for example, the Shure SM58 and SM59 microphones:

wireless world

Into the 'eighties

Editor:
Deputy Edito PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORT GEOFFREY SHORTER, B.Sc Phone 01-261 8443
Projects Edito
MIKE SAGIN
Phone: 01-261 8429
Nows Editor:
RAY ASHMORE, B. Sc., G8KYY
Phone 01-261 8043
Communications Edito
TED PARRATT, B.A.
: Phone $01-2618620$
Drawing Office Manager

Technical Illustrator
BETTY PALMER
Production \& Design
Production
ALAN KERR
Advertisoment Controller:
G. BENTON ROWELL
Advertisement Manage
Phone 01-261 8622
DAVID DISLEY
Phone 01-261 8037
BARRY LEARY
Classified Manager:
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
NEIL McDonnell
Classified Advertisemen
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353
Publishing Director:
GORDON HENDERSO

Our front cover introducing the articles "Radio and electronics into the 'eighties'
symbolizes man's involvement with his technology. This is a two-way process. The more devices and systems he produces the more h
changes his environment and this changes his environment and this customs, institutions and general way of life. And it may go deeper than this. According to the early sociologist Durkheim, a person's knowledge of
himself - his self-image - is created himself - his self-image - is created
by the society in which he lives. Not only does he exist in society but society exists in him. So in modifying the material basis of society and hence social relations by technology, himself as an individual and all the imagined needs or wants that arise out of this concept. No wonder that modern man in industrialized society seems such a restless, anxious and dissatisfied creature
This two-way pro
when the technology is electronics, fo here we are concerned with transmitting and transforming information, and ultimately, if not directly, this information causes What seems to emerge from the developments described in the following articles is that the 1980s will see a further intensification of the link
between the human being and his electronic systems. The systems will become even more closely matched to he input and output capabilities of the biological organism and will make even greater demands on it. It's not simply a conveying more information in a given ime, but a continuing increase in the efinement and variety of the information put in by and presented to Higher quality
mages, and higher performance in
radar systems and laboratory
instruments, for example, all demand greater attention and discrimination. In broadcasting the addition of colour and sound have already given us more to perceive and cognize, and electronic tricks in sound and vision synthesis are stretching these abilities to the edge of confusion. In radiocommunication,
voice messages are being supplemented by digital data transmission, often on the same circuits, to make possible greater detail and accuracy. And now the general public can retrieve useful facts from data banks ov
Telecommunications are, of course essential to organizations - especially large, far-flung organizations like nultinational companies, airlines and political/military alliances - to enabl propriately to events in and their structure. Any message demands a decision, if only to ignore it, but with messages arriving quicker, and in eve greater quantity and detail, the people to be continually making decisions and deciding priorities is reaching inhuman proportions. Some ndividuals have found it too much and ave left for a quieter life.
Laboratories, the president, W.O Baker, said of communications: "I see t also as a mission of importanc nvolving great responsibility. efficient and satisfying handling of information - these I deeply feel ar essential to help solve economic and ocial problems and aid efforts to civilise the future". These are noble that we cannot solve such problems b technology alone. As humans we are imited in our powers to assimilate nformation and in our good will to ac nit properly. Perhaps what we really wisdom.

Intelsat V (above) the latest communications satellite, which will be launched at the turn of the year marks dramatically the entry of radio and electronic technology into the 1980s, for it has double the communications capacity of its predecessor, Intelsat IVA. Equally important advances are being made in terrestrial radio and its related fields, and in the following pages we present articles by seven specialists who first look back at what has happened over the past decade and then project their thoughts and expectations into the 'eighties.

Land mobile radio

by W. M. Pannell, M.I.E.R.E. Pye Telecommunications Ltd

Technical progress in the electronics ndustry over the past decade has take sector certainly not lagging behind. The inevitable questions arise: What effect have all the changes in technique had on the mobile radio industry and its biggest impact? And, what can we the pect over the next decade?
Although the changes to the mobile and portable units, the fixed equipments and the peripherals have shown considerable innovation over the past ten have been brought about by the inreasing complexity of overall system equirements.
One change that made a major decade ago, was the decision to split the channel bandwidth at v.h.f. from 25 to $12 \frac{1}{2} \mathrm{kHz}$. This resulted in some
immediate relid in the search for extr spectrum and a marked reduction in improved the utilization of channels for many types of user.
During the 1970s we also saw the increasing use of personal portables in all types of system. This is, of course, a
logical progression in view of communication being needed betweenpeople rather than vehicles in most cases - the main exceptions being where interrogation of vehicle status is desired or where vehicles are the e tial tool, for example fire engines.
It was at this point that the m towards miniaturization became an essential requirement in all types of equipment, not so much because of the need for smalier equipments, although in portable design this was naturally a
fundamental requirement, but more to enable equipments of increased com-
plexity and versatility to be designed the more sophisticated systems without increasing the total volume of in
dividual units. So an upsurge in the use of integrated circuits took place: the ubiquitous light bulb was replaced by light emitting diodes: 1.e.d. followed by l.c.d. displays became a recognised
means of presenting information; while conventional components became steadily smaller to keep. up with the new techniques. At the same time, higher stability frequency sources and better i.f. filters became necessary in fixed,
mobile and portable equipments as the mobile and portable equipments as the Meanwhile, in the systems control field, processors began to take ove many of the functions which had previously involved complicated manual
operations. More facilities and information became available to the system controller, while, in the mobile, actions

WIRELESS WORLD, JANUARY 1980
could, for example, be initiated from without the need for intervention by the mobile user.
Signalling. Signalling over radio gained considerable ground during the 1970 tive calling were often considered to be refinements and were avoided wher possible, usually on the grounds of cost and size. Solid-state technique changed this view and selective callin mechanical selectors gave way to unit of but a fraction of the size and power onsumption.
Unfortunately during this period the variations in signalling techniques in anufact an alarming way, eac manufacturer tending to develop his wn form of coding with the result tha compatibility became almost impos sible. At present there is however a
rend to standardise on a few of the trend to standardise on a few of the tone variety. Even with the reduced number of variants, compatibility is still a problem and further standardisatio A lot of work has been
Acent years in digital undertaken in generally of the order of $1200 \mathrm{bit} / \mathrm{s}$. arious error detecting and correcting odes have and are being investigated obtain higher coding efficiency and Such techniques may help in providing ata communication at signal level which in the past have been considered oo low for error free data transmission. Digital signalling will undoubtedly be assignment switching, sophisticated selective calling, alarms, identity printer drive, data display and many ther uses. However, the low signa has yet to be equalled by any but very low speed digital signalling
Microprocessors have enabled "intelligence" to be added to systems. The er of manual press-to-talk and th panied, where needed, by a selective cal operating an electronic 'door bell' is now often superseded in the larger sys ems by intelligent switching function here channel and routing procedure haking/identity routines are underaken with complex control function eing processed, as well as many othe chnically complex operations. At th ooment, microprocessors, although heap, tend to be greedy in power conmproved in the near future by the use of c.m.o.s. and ultimately silicon on apphire (s.o.s. m.o.s.). Microprocessor n portables where low consumption is
runking. Trunking in land mobile sys ems is a technique which has grown luring the past few years with the help
of the microprocessor. While the full dvantages of such systems in requency spectrum economy have yet to be seen, undoubtedly first indications
are favourable. The use of trunking
 problem concerning the ownership of the base complex, and this may limit its use to definite types of system wher ingle ownership or the radio commo carrier type of operation prevails

Quasi-synchronization. System techniues evolved during the 1970s included he use of a quasi-sync - a method hereby a number of transmitter imultaneously without interference in number of overlapping areas Although as early as $1946 \mathrm{~J} . \mathrm{R}$. Brinkley roposed the use of staggere carrie echniques, this method ultimately be width was reduced down to $12^{12 / 2 k H z}$ A hese narrow bandwidths much close taggering, of the order of a few hertz, is required, so that a need arose for high

Stability, low noise oscillator The technique of quasi-sync is sonerally applicable to a.m. and f.m. at frequencies up to 500 MHz although at v.h.f. the use of f.m. quasi-sync is subject to some eservations.

Frequency sources. The development of frequency synthesisers for mobile radio also shows signs of increasing in tempo as the need for greater frequency agility grows. Several designs have been anchips. It is just a matter of time before the cost of such devices is comparable with conventional crystals, even for one channel. Meanwhile frequency contro has improved considerably by the use of often standard on present day fixed receivers in the land mobile bands.
Modulation methods. Overshadowing many of the developments during the past few years has been the obvious rapidly diminishing spectrum space available for each new land mobile radio
system. Much has been written on the

This microprocessor controlled equipment generates and decodes selective calling generates and decodes selective calling
tones. Providing alert, identification, status, alarm and other operating functions, it is compatible with all known
selective calling systems.

Synthesizer board in the Pye M206X two-way radio can be supplied for
anything from 16 to 128 channels.

ubject and at the recent World AdGeneva much was undoubtedly discussed.
Even if, as a result of all the decisions made, extra spectrum is handed t that economies must be made. To this end techniques are already being invesigated to achieve spectrum savings and of s.s.b. is but one method currently under review. Others include spread spectrum methods, stored speech and he virtual elimination of speech by the otal use of data in those application where standard forms of message prethe early stages of investigation, but the development of s.s.b. is quite advanced development of s.s.b. is quite adv Cellular systems. Much has also been
written on the use of small cell tech niques in urban area radio systems. In
the United States, where a lot of work he United States, where a lot of wor has originated, several systems are using this principle. Although the cells involved initially in these systems cannot really be described as 'small cell', the possibility of sub-division exists and will undoubtedy be the subject of further necessarily oriented towards processor control if all the functions proposed are to be implemented. Cellular systems and trunking have a great de

Energy sources. In spite of the huge variety of systems which have been devised over the past decade, one com energy source required to drive the equipments. Vehicle units are generally no problem, there being a ready source of d.c. in the vehicle. Portables are different matter insofar as, although a the assembly, this must be eithe replaced or recharged after a period of work. There has been no outstanding design change during the past ten year which has increased the portable its size, so this is one aspect where changes are required.
In fixed equipment the tendency has been to use secondary batteries charged
from sources of energy ranging from from sources of energy ranging from
the public power supply through diesel major role in the more sophisticated systems, as indeed they are beginning to do in many other areas of present day activity. The future holds an almost unlimited range of possibilities.
Dynamic channel allocation, automatic transmitter power level adjustment to suit the propagation conditions and local interference level, automatic call
routing, and many others are already in routing, and many others are already in
the pipeline, and every day sees a new requirement.
In spite of the digital revolution we must not forget the more conventional forms of mobile communications forms which will undoubtedly remain in use for a long time, particularly in the seas areas where sophistication is not seas areas where sophistication is net single sideband at frequencies up to at least 500 MHz could well provide all the channels needed until the end of the
present century even in areas of interpresent century even in areas of inter
national congestion - where, fo economic reasons, several countries merge into a single overall area. It should also be emphasised that s.s.b. can also carry the simpler forms of dae tional a.m. and f.m. systems.
Portables will tend to become the more normal form of unit, although generally adaptable also for mobile use. Here again the use of data may modify the portable as we see it. For example,
display methods may be incorporated to minimize standard speech messages. Key pads to send alpha-numeric messages will be of greater convenience than speech, in many cases, for example, in crowded environments
where privacy is required. Similarly key pads will be used for routing the call.
The low efficiency of the portable antenna is another area for further development. However, it could well be that, rather than improving the ranges possible with portables, cell type sys-
tems will predominate and most fixed tems will predominate and most fixed power stations closely spaced Typically, if operation into the telephone is envisaged, the existing telephone call box could be used to present physical spacing being close enough to permit very low power to be used. available power and eac connection into the telep
All these innovations will inevitably All these innovations will inevitably requiring more compact packaging if only to maintain the same size. Work must be undertaken on battery design if sizes are to remain as at present or extra consumption of the ancillary equipments means that increased battery efficiency is a 'must'

IIRELESS WORLD, JANUARY 1980

With the ever increasing use of integrated circuits it is not impossible that will move from largely discrete com ponents to both hybrid and monolithic .cs. With this approach the basic radio quipment win to become stereoped in design and specification, with ferent. The ancillaries, which will be etermined by the system, will then be he part of the package which wil ighlight the individual unit It is for these reasons that, although tions in as many aspects as possible future advances may be inhibited by too great a degree of commonality as inte gration becomes more involved. The up some advantages. Already we are at the point where 'throw-away' module are often more economical if and when fault develops. This practice could even extend to the complete unit, es Even now for example, it is cheaper t buy another medium wave pocket broadcast radio than to repair it. It is nly a short step to the more compli receiver unit.
In the realm of power supplies, on hopes that there will soon be some breakthrough in the overall efficiency of batteries relative to size. Ultimately creasing electronic complexity must be reduced to a point where the can be 'worn' in an inconspicuous man ner by the average person. Neverthe ess, very small units are not really f technical and functional reasons.

Broadcasting

by D. P. Leggatt B.Sc., F.I.E.E
Engineering Information Department; BBC
One of the most striking features of the One of the most striking features of the
last decade has been the public appetite for high-quality audio. The 'hi-fi' was becoming a must in any modern the end of the decade this had developed the end of the decade this had developed has been led by the gramophone record, it represents a gratifying conversion to he gospel preached by the broadcaster ince the introduction of v.h.f./f.m broadcasting in the fifties, with the acceptance was slow to develop but at last there is wide appreciation of high quality reproduction. Much recent de elopment in radio broadcasting ha in the studios, stereo origination is becoming standard; on the distribution networks, high-quality digital p.c.m.
systems are spreading stereo broadcast-
ing throughout the country; the v.h.f transmitter network is being extended; and experimental transmissions of tems have been mounted. Although the majority of the radio audience still uses medium and long waves, the congestion and limited quality of reception on these

bands has added fur swing towards $v . h f$.
 swing towards v.h.f

Another reflection of the healthy activity of radio in the last the yealthy been the development of local and regional radio services. BBC Local Radio started in the late 'sixties, followed by Independent Local Radio in the early 'seventies. These did not bring new technical problems, but they did
increase pressure on available increase pressure on available
frequency channels: indeed, we have now reached the point where the v.h.f.
Band II is badly congested and frequenand II is badly congested and frequen-

Possibly a packet of 'king' size cigar present day 'credit card' calculator seems to be popular, and this format could well be considered in future personal radio designs. The 'king' size
package has already been achieved in package has already been achieved in
many types of pager, but of course the battery requirement here is quite different as there is no heavy transmitter whether charging batteries, and number, or are the larger types feeding a fixed station, are important aspects requiring further attention. In the obvious immediate answer for powers up to a maximum of 500 watts. If efficiency could be improved, many other types of station could ben
quite often saving expendable fuel.
In suitable areas the wind is already undized as a soure electical power and work on optimizing the energy
conversion has produced good results. The energy in water movement, whether wave motion, tidal changes or
just flow, also offer large scope for investigation.
Without any doubt, the future of
mobile radio looks exciting. We must mobile radio looks exciting. We must developments to ensure that they do not fall into 'nice to have' category, but perform a real service to the world.
Improved communication, saving of energy and all the other advantages likely to accompany the microchip era will undoubtedly gain momentum as we move through the years towards the next century. It is up to the engineer to ordered path.

cies have to be shared by programme services which really require channels to themselves.
Turning to television, the main areas be categorised as improvements in transmitted quality; extension of programme services; and improved facilities for programme makers. Improvement of picture quality is, of course, a
continuing process as each generation of equipment succeeds the last, but one very obvious advance has been the spread of colour into the majority of all programmes with steady development in clarity, fidelity and consistency of
colour picture generation and reprocolour picture generation and repro-
duction. Two other examples of technical quality improvement are worthy of mention: the introduction of almost distortion-free digital standard converters has brought significant quality
improvements in the international exchange field; and the video noise reducer, a recent digital development, offers considerable benefits for programme material in general
Programme services have been
actively extended in the 'seventies Notable developments have been the extension of u.h.f. transmitter coverage; the introduction of the teletext information services, Ceefax and Oracle;
increasing use of satellites for interincreasing use of satelites for inter-
national exchange; computer-based subtitling services for the deaf and for foreign films; the simultaneous transmission (on radio) of stereo sound with selected television music programmes;
and, in the home, the availability of and, in the home, the availability of
video cassette recorders for catching programmes which would otherwise be missed.
Improved facilities for programme mange of better programmes for the range of better programmes for the
viewer. The decade has seen much progress, including improved videotape recorders with sophisticated editing systems; instant replay and slow motion
facilities really facilities; really portable cameras and
video recorders for electronic news gathering; full-facilities outside broadcast cameras requiring only a single coaxial cable; zoom lenses of increased range and aperture; digital timing corsignal timing: and digital picture stores for special effects and graphics work. What, then, is the zeitgeist which has characterised the seventies?

transistors, large-scale integration and computer techniques, technical solu Increasingly, as time goes on, it will be economic, political and social factors which determine the course and pace of development. The questions for the we want and what can we afford?" rather than "is it technically feasible?"

The next ten years
You want ' 100 Best Tunes' in the kitchen, so you pull out the telescopic results you need the aerial horizonta and angled for best reception; and in doing so you sweep three cups onto the floor! Then you find Radio 1 is taking its turn on the v.h.f. channel so you switch to medium wave. You find three or four which is Radio 2? Eventually you hear Alan Keith's voice, but with an excit ble Frenchman in the background plus crackles from your neighbour's electric to the pub again! This points the
sks for the 'eightwy to some main adio channels, signals which more more easily received and soch can be elp us find the programme we want. It is to be expected, following th World Administrative Radio Conerence in Geneva, that more broad casting channels will become available to re-engineer the existing v.h.f. trans mitting networks to avoid the necessity for sharing between BBC Radio 1 and adio 2; to reduce the need for dis procement of some Radio 3 and Radio ocater for significat extensions of local radio services, ILR and BBC; and to increase the number and power of transmitters so that adequate signal in cars become available throughout most parts of the country. Further ex-

Experimental BBC radio receiver allows programmes to be selected digitally by a printed in the Padio
-
TS OTS satellite used for ITN broadcast from

tension of the p.c.m. signal distributuion system will be a necessary ancillary to this transmitter development
Towards the end of the 'eighties we may see the start of some direct transmission and reception of sound programmes in digital form. Although this
may become the norm in the long-term may become the norm in the long-term
future, current investment in convenfional analogue systems is such that change to digital methods is not likely to be rapid.
Choosing a programme from the published schedules, selecting the right recéiver for optimum reception are becoming increasingly difficult for the average listener. Ideas are now developing for radio transmissions to carry
coded identification signals inaudible to the listener but detectable by a suitable

WIRELESS WORLD, JANUARY 198 eceiver. Given such codes, a receive ould be pre-programmed at the lis programme - or type of programmes ch as news, light music - and switch on at the appropriate time without the
need for any manipulation or control by need for any manipulation or control by also be used for automatic control of cassette recorders and to carry time information for electronic clocks. he 'eighties may include whatever form of surround-sound is finally agreed; and dedicated channel of motoring infor mation such as the BBC's Carfax deve opment.
At the programme origination end, be with us and will offer quality good enough for multi-generation work with little need for the careful alignment and maintenance which analogue recorders demand. Digital sound mixing desks puter control of complex mixdowns from multitrack recordings which is already a facility in some recording areas.

Television. Although the solution to many technical problems can be foreseen, there are in television one or two areas "were we need to tell our through!"
The limited sensitivity of colour cameras is a case in point. Existing sensors are already approaching the region where photon noise - arising
from the quantum nature of light becomes the limiting factor. No new sensor, however revolutionary; can cross this fundamental barrier nor can we foresee optical devices of manageable size which would gather in many momitted by an ill-lit scene. The apparently much greater sensitivity of the human eye/brain combination is achieved by physical and subjective integration processes and it is down this
road that useful investigation may proceed: the current development of integrating noise reduction equipment perhaps points the way
In another area, colour camera sensors and receiver display devices colour superimposition techniques with attendant disadvantages in terms of size, complexity and cost. A single colour pick-up device is wanted with outpuminance and no need for optical colour separation filtering; correspondingly a large area, flat display device is needed, responding to hue and luminance signals rather than relying colour images. We must hope that the 'eighties will see a breakthrough in this area also.
Turning to more foreseeable deve-
lopments, work will continue through

Prototype Carfax receiver module.

Teletext hard copy printer. 4
2 Mbit television field store based on c.c.d. devices, as used in digital standards converter and digital noise reducer. ∇

the decade to extend relay station coverage to yet smaller population groups in the UK, with communit tems playing an important part. The fourth television channel will be with us and there may be increasing pressure
for local television services. More chan for local television services. More chan
nels will be needed and the u.h.f. bands may be extended to accommodate this 405 -line services on v.h.f. Bands I and II nill be closed down and Band III at lea or new, television networks. Band I is not ideal for television and could be used for mobile services displaced from Band II and perhaps for the start o direct digital radio broadcasts. Telev sion broadcasting via satellites - for
direct reception at home or with local distribution from a number of ground stations - is being actively planned fo some European countries, but seems tional transmitter coverage is fairly omprehensive
An alternative source of television programmes is the video cassette recorder. Already well launched in the seventies, its use for replay of pre significant factor in programme dis rribution in the 'eighties.
In the studios, programme makers will be looking for increased flexibility and reliability. These qualities are of signals may be stored, manipulated and passed between areas with little degra dation or need for manual intervention Already we have digital systems for penversion, noise reduction starre synchronisation, sound distribution, eletext services and numerous routin control functions. We can soon expect to see digital video recorders and and digital camera processing chains Digital PAL coding will reduce very significantly the cross-colour effect which is perhaps the most obviou shortcoming of present-day colour can look forward to compact cameras using highly integrated digital circuitry (and a single colour sensor?) with digital transmission via transportabl
entre. The islands of digital operation now
appearing in the chain will steadily be
merged during the 'eighties. Once a
signal has been converted to digital sorm there are many good reasons for keeping it that way until final conversion at the transmitter to the PAL coded analogue signal required by the domestic receiver
For international exchänge we shall
find signals distributed in digital form, very possibly as luminance plus colour difference components; final coding into PAL, SECAM, etc. will be left to the
individual customer countries. Accompanying sound will be digitally multiplexed with the vision signal, several sound channels being available for multilingual requirements. All this will require comprehensive national and coding methods, and much work in the 'eighties will be devoted to negotiation and argument on this front. Teletext and similar services can
clearly be expected to adyance rapidly clearly be expected to advance rapidly
in the next ten years. The scope of the information provided can increase almost indefinitely, reasonably short access times being maintained by allocating an entire television channel to
this purpose and by provision of further storage and processing in receivers.

High-resolution graphics, still and an imated pictures and increasing sophisticated sabTelesfotware, the transmission via teletext of computer programmes, will greatly extend the variety of tv games
and will provide the non-specialised computer services which increasingly we shall make use of in our domestic lives. Hard-copy printers will become available to give us permanent records
of any desired teletext information and of any desired teletext information and
(though not perhaps in the 'eighties) this may become the medium by which we receive our copy of Wireless World. As we move towards the 'nineties, we may see the first optical fibre data
circuits run into private homes. In the longer term all radio, television, information and communication services will come to us 'on the fibre,' radiated transmissions being reserved for mobile
applications where wireless comapplications where wireless com-
munication is essential. Once we have our domestic wide-band circuits and high-quality large screen displays, the way will be clear for 'hi-fi' television on new standards. But it will not be in the 'eighties that we shall be closing down

Consumer electronics

by St John C. Jackson, Thorn Consumer Electronics Ltd.

The last decade has been one of rapid development in the different design: areas of consumer electronics products making use of advances in electrical component availability and electrical easier for the majority of people, whose interest lies mainly in what such products will do rather than how they work.
There is perhaps one feature which, on looking back, makes consumer elecwith any other manufactured product. It is the fact that, despite the very real improvements and the ravages of inflation at the end of the seventies, on a
like-for-like basis, products were cheaper at the end of the decade than they were at the start - in many cases in cash terms but without doubt in real money terms. A comparison of con-
sumer electronics products shows that a 12in mains/battery monochrome portable tv cost around $£ 55$ (or 2 weeks average earnings) in 1970 and nowadays even with v.a.t. at 15%, the, same two weeks average earnings and Similarly, the first electronic calculators retailed at over $£ 200$ - now for less than $£ 10$, a pocket calculator is commonplace of includes all or more of the functions
seventies also had their casualties remember the 8 -track cartridge, remember quadraphonic sound, quadraphonic sound for a moment possibly for the first time, technological market place to accept it. Whilst the

WIRELESS WORLD, JANUARY 1980
electrical engineer could point to the forgot that the user didn't have four ears or, perhaps more to the point, his girl friend, mistress or wife was not prepared to accept four separate loud-
speakers in the living room. There was also a more
point; the competing quadraphonic systems each required their own prerecorded software and because more
time and effort was spent time and effort was spent on selling the
advantages of one system against the others, confusion reigned. For the future, it is important that product development is based on agreed international and common standards, but let's look at specific pocket areas and
they developed in the 'seventies.

With tv receivers now in 97% of UK homes (70% colour) it's right and proper to consider television first. In the early seventies, the transition was bein
made from hybrid chassis with a mixture of valves and transistors to all solid-state. With moves in this direc tion, styling improvements were made possible to reduce the overall size of the engineering moved towards modular construction.
Ultrasonic remote controls made their appearance, and were quickly accepted only to be gradually replaced
by quicker-acting infra-red control sys tems. Whilst ultrasonic controls were more than adequate for the typical viewer of the late 'seventies who wanted to send simple commands to his microprocessor-controlled systems is particularly relevant to the customer requirements of the 'eighties when
usic centre with digital frequenc
Music centre with digital
tuning (Ferguson 3951)

Ferguson TX9 single circuit board colour
tv chassis

Personal computer by ITT is contained in the keyboard unit with floppy disc drive on left. Memory is up to 48 K bytes of r.a.m. and $8 K$ bytes of r.o.m. holding BASIC and a system monitor.

tess world, January 1980

Teletext and Prestel are likely to be in However, both of these great British developments with their data display capabilities are still in their infancy and the lack of average consumer awareness about their existence and what the not enough for the engineers to apply their minds and develop such powerul people must do more to promote their benefits.
Probably the product area of the 'seventies which will have the greatest both cassette recorder and disc. The late 'seventies saw the introduction of domestic video cassette recorders not much larger than conventional audio cassette recorders and almost as easy to any format) relied heavily on mechanical control functions but already we are beginning to see mechanical operations replaced by sor controls, but more of this later. The audio scene saw one overriding development - the growth in importance of the conventional audio cassette, aided
by the world-wide acceptance of a common standard. Ten years ago, the available cassette hardware and software was still regarded as something of a novelty and not a serious contender to the established position of the quality record player and audio disc or open
reel recorder. Developments such as noise reduction systems, improved drive systems and record/ replay heads, software developments improving overall performance
standards (with first of all CrO_{2} tape and more recently the introduction of metallic tapes) have elevated the performance of cassette equipment and:
cassettes of ten years ago to a repla medium generally accepted even in have also accepted the cassette. At the close of the 'seventies, UK home owned more cassette playing equip ment than disc playing.
The development of low price, good quasic centre a practical proposition and without doubt this particular item was the audio home entertainment product of the 'seventies. The audio cassette is also the common denominator amongst
those other products that during the period had greatest appeal for the: public. Cassette and radio cassette recorders now sell at an annual rate of more UK. The biggest growth area in the late 'seventies was quality stereo radio cassettes with automatic programming facilities and even Dolby Noise Reduction.
Cassette-based products have been so successful because they have two overcounterparts; the cassette can be rerecorded and the machine is easily port able, satisfying today's demand for music on the move. In-car entertain-
ment products have also adapted to the higher ownership levels of home based cassette equipment so that today it is possible to have better quality audio hounds ten years ago homes ten years ago
But enough of the
the 'eighties will see most of the the televisions acquired during the 'seventies replaced by receivers which, on the outside, may look similar (apart controls) but on the inside will bear very little likeness. The modular chassis of the 'seventies will increasingly be replaced by single board chassis de

signed to optimize the availability arge scale integrated circuits (1.s.i.) an remopplication of microprocessors, isplays. The introduction of single oard chassis will revolutionise not only product reliability but also the approach to servicing so that the serice department or the eightly different to that of the seventies. Today's cathode ray tube ehnology means that the television iewers of tomorrow will see de monstrably better pictures and dat Increasingly, tv receiver design will have to accommodate the requirements of home computers, video games etc which are rapidly changing the natur quipment capable of only showe programme material being broadcast by the BBC or IBA to a two-way, interact ve display medium at the centre of communications network. By the mid eighties, satelity a realitowist the viewer a much wider choice of programme material. It is also reasonable to predic hat voice-activated controls will begi

viewer from the arduous task of having to press the control buttons of a hand-held remote unit!
But, as previously mentioned, the
eighties will more than anything else eighties will more than anything else be tion of domestic video products. The VHS (Video Home System) format has quickly established itself as the bestthe major developed markets - the UK, Europe, USA and Japan - but despite this, other video formats are likely to be around for many years to come. The conventional likely to change with the
recorders is recorders is likely to change with the
accent being on the portability of a recorder unit linked to a separate programmable tv tuner/timer which could be indispensable when satellite broadcasting is a reality. Indeed the situation
could well arise that despite the increased leisure time available, video owners will be so busy recording programmes they will never have the time to replay them!
Already the introduction of the
vidicon tube has made low-cost, vidicon tube has made low-cost, good No one can doubt that the already high performance standards of today's products will be improved, real money
prices will fall and the cameras them prices will fall and the cameras them-
selves will weigh less and diminish in selves will weigh less and diminish in
size. No wonder that with the arrival of electronic photography manufacturers
around the world are getting out of the
conventional cine 8 camera business as quickly as possible - they have seen the writing on the wall
It is forecast that the ownership of parallel the early growth of colour tv in the UK. By 1984 at least 7% of UK homes are expected to have acquired one. They will be used mainly for time-shift re video movies at around $£ 5$ per hour compared with $£ 100$ per hour plus for cine, the difference adding greatly to consumer appeal. The additional appeal of pre-recorded video cassette software disc players with their lost cost software become a reality. One thing is certain, the incompatibility of the various video disc standards that are likely to appear with the present ones surrounding with the present ones surrounding
video cassette recorders. The availability of disc software will be a critical factor on three counts
a. without the appropriate software the disc player itself is useless.
b. questions related to the low cost production c. material for reproduction on video disc is likely to be surrounded by a minefield of copyright issues which have still to be resolved
However, the video disc player is
likely to lead to the further demise of

Wireless world, january 1980 Ferguson's forward-looking flat screen called "Total Television." Although this is just a dummy, most of its component parts are available as production items or on the development horizon.

IT TV 16 viewdata terminal. The lower section contains an isolated power supply
and the viewdata equipment while the nd the viewdata equipment white the viewdata display or as a "straight" 16 in
black and white tv receiver.

he conventional audio record player because despite the name "video disc, all video disc players give the capability replay, making possible a signal-to noise ratio in excess of 90 dB through the use of p.c.m. recording techniques. S looking ahead, any audio disc system hat does not include a video replay tough. So far no reference has been made to monochrome television receiver which, as the years pass, are likely to become increasingly less attractive as bitewing as the norm. On the other han
vies it is not unreasonable to suggest that the youth of tomorrow will look a television in the same way that today
hey look at radio and the cassette That they look at radio and the cassette. That is, they will want to take it with them
wherever they go. Therefore (and with continuing miniaturization) today' combination tv products either with radio, or radio and cassette, are likely to become more and more popular. Audio in-car" will become increasingly cassette-based as the youngsters of today become the purchasers of tomor ow. This is a generation to whom the majority look upon their parents collection of $78,331 / 3$ and 45 r r.p.m. disc with the same degree of interest that
Arthur Negus looks at 17 th century

ness world, January

antiques. Further improvements in cassette hardware and software, berecording techniques, will be readily accommodated on the conventional audio cassette format.
In looking at the 'seventies, little was mentioned about radio, not deliberately but because with the expansion of f.m. stereo broadcasting that has already taken place, no great changes are anti-
cipated. Certainly, in looking ahead it is expected that preset tuning facilities will appear in all but the most basic of radio products. Synthesized tuning systerms will undoubtedly make their way ducts and digital tuning frequency displays will become standard.
To many people, the radio is still a very important vehicle for keeping in touch with the outside world and with broadcasting putting the emphasis on news and general current affairs, the radio will increasingly take the place of
more conventional sources of informaton, for example, newspapers. News is of great value in the car, and travel information systems, such as the BBC's pilot testing of Carfax, will be a practi-
cal expression of advances in electronics applied to real consumer applications, particularly as such systems can lead to real time and energy savings. Citizens' band radio has received enough recent publicity and at the end of the day the outcome will be decided by politicians and civil servants rather than engineers, marketers or even public demand.

Home video computers and programmable video games will be areas of dramatic growth in the eighties but initially confusion about base technoCertainly one of the best moneymaking opportunities in the 'eighties will be in providing the software programming facilities in support of the expanding range o
So where does this quick review lead us? Very simply, to many new and exsiding new business opportunities prothe ability to keep a continuous flow of new products available to customers to help and entertain them. Not all of these and one major problem will be in the retail store where the salesman will have to assimilate a lot of new technology if his or her traditional role is to continue.
The degree of product knowledge needed to demonstrate and sell a home the one currently selling a mains/ battery cassette recorder. Service enminers too, are going to come across a products they will be looking at on a day-to-day basis.

Beyond the 'eighties?
Quite recently Ferguson had an experimental look at the home entertainmont centre of the early 1990s. The result was a concept called "Total Television" which included in a domestic console unit, a VHS electronic casselectronic audio cassette, Prestel/home computer keyboard and videophone with remote control of all viewing functions. The conventional c.r.t. was
replaced by a wall-mounted flat screen replaced by a wall-mounted flat screen
including four monitor screens to take account of the multiple screen viewing that might be a requirement of the future. A dream? Well apart from the flat screen the other features of the unit
are either with us today or at least large scale manufacturing possibility. Only time will tell how close to reality the ideas of the late 'seventies
will be at the end of the 'eighties.

Radio navigation and radar

by D. W. G. Beat, B.Sc., F.Inst.P., F.I.E.E., GEC Marconi Electronics

The fields of radio navigation and radar cover a broad range of constantly fluenced by advances in computers and military systems.
With both the
With both these topics, we are interested either in where we are, or where transmitting or receiving signals at a known location or vehicle in question (ship or aircraft). Almost every permucation and combination of these altern atives has been investigated over the past fifty years or so
In moving a vessel
In moving a vessel from A to B som tion plotting should be maintained and in ships in particular, traditional methods using the sextant, chronometer and compass are fundamental aircraft frequently rely on inertial navigation, again based upon the gyro, and indeed ships also use this type of navigational aid. However, we are here radar, and in very many ships, in aircraft and at airfields, the ubiquitous direction finder (d.f.) is used, and is sometimes the only form of aid. In fact, both radar and radio navig e their ancestry back to the simple trace
The adoption of new equipment in civil aircraft and ships is inevitably limited by financial constraints; every piece of new hardware proposed for a
ship or aircraft must be justified in ship or aircraft must be justified in
terms of cost effectiveness. This means that adequate, well-proven techniques and systems tend to have a very long operational life. Nevertheless, if rapid, accurate position-fixing can shorten period of increasing fuel costs, new.
equipment capable of providing this Safety at sea and in the air is course, vitally important. At sea, mini mum safety requirements are recon mended by the International Maritime Consultative Organization (IMCO) pr although the country in which the ship is registered legislates for this - in the UK, it is the responsibility of the De apartment of Trade. In the air, the equip-
valent authority is the International civil

Direction finding
Before dealing with some of the more recent developments in navigation aids, the current state of d.f. is worth
examining. There are three major areas of common commercial usage, air-to ground, ship-to-shore and ground-to ar. There are other military applications, but for general navigation the
major advances have been in improving the equipment. A typical marine auto matic direction finder, in common use covers the m.f. beacons in the ban $50-550 \mathrm{kHz}$ and also operates on the kHz . This equipment is as simple to use as a domestic receiver, gives automatic ambiguity resolution, the bearing of the station being read directly from $\pm 1^{\circ}$ Because, typically to with $\pm 1^{\circ}$. Because of the relatively short ton by d.f. is mainly confined to coastal waters; in the consumer field, many thousands of simple direction finders motor cruisers . The situation and airborne d.f. is similar to that for ship most aircraft carry one and the accent is ar. There are other military appica-$0-550 \mathrm{kHz}$ and also operates of 218
 a -

\square
\qquadI band is typically 190 to 1800 kHz . The
size of the antenna loops have been reduced and contained in stream-lined bumps to reduce air drag. In many parts of the world a.d.f. is still the primary
source of navigation information, which in areas with good reception can provide a bearing of $\pm 1^{\circ}$.
Ground-based direction finders require only the minimum of a communication set in the aircraft to provide
a position line, so that if all else fails, navigation assistance can still be provided. These direction finders mostly operate on v.h.f./.u.h.f. and in order to minimize the bearing errors from all causes, antenna arrays are multi-
element, frequently wide aperture and automatic in operation, with directreading bearing presentation. Most locations can provide $\pm 1^{\circ}$ accuracy on signals of reasonable strength.
A short-range navigational aid
closely allied to d.f. is the v.h.f. omnirange (VOR) which, when associated with a distance-measuring equipment (DME), gives aircraft a precise location.
The range limitations operating at v.h.f./u.h.f. (108-118 MHz for VOR and $960-1215 \mathrm{MHz}$ for DME) make this system unattractive for ships.

Hyperbolic systems

Measuring distances from known ground radio stations is a well estabsystems are so called because the position lines they provide from such measurements are hyperbolic curves. Referring to Fig. 2 , if T_{1}, a transmitting sta-
tion, emits a short pulse, and trans. mitter T_{2} simultaneously emits a second pulse, then any receiver on line A-B will receive these pulses together. Positions at which one pulse is delayed by a given time with respect to the other lie on one
of the hyperbolae. The association of a third transmitter would provide two position lines and therefore a fix.
One of the best known pulse systems is Loran 'C' which operates on a
frequency of about 2 MHz and covers large areas of the Pacific, Atlantic and Europe. During the last war, a similar British system known as GEE operated at v.h.f. With a good ground-wave pulse, position accuracies of better than
one mile in 100 miles are possible but, as with many long-range navigational aids, ionospheric sky-wave propagation can produce errors an order of magnitude larger, and considerable skill is needed to interpret results in adverse
conditions. The Decca system operating at around 100 kHz , also became established during the second world war. This uses c.w. signals and phase measurement to provide position lines and fixes. Very many ships and
aircraft carry Decca, which has been considerably refined over the years to overcome propagation and ambiguity problems, so that automatic plotting on route maps is now generally in use.

giving accuracies of fractions of a mile. A system of increasing importance, which is designed to minimize range nd propagation problems, is Omega This operates on very low frequencies station baselines of around 5,000 miles The very low frequency provides long range, stable and predictable propaga on characteristics and the large poparation between stations means tha very large areas. Omega is a c.w. phase-comparison system and is virtully the only radio navigation syster
that can be used by completely sub. merged submarines
A typical marine Omega receiver incorporates four channels for continuous monitoring of four transmitters, each
channel measuring the channel measuring the phase of the
signal relative to an internal high stability reference oscillator. Phase difference can be measured to onehundredth of a cycle, defined as centi-
lanes. In use the lanes. In use, the receiver is run conmatically logging the lanes. It takes about half an hour to cross one lane, and modern equipment provides direct

tems must be horizontally stabilized or a further pair of beams arranged to point aft to provide a differential signa The Doppler itself gives ground speed and drift angle: to determine location, accurate heading information must be provided to the navigation computer
Most Doppler systems operate a microwave frequencies around X-Band $(3 \mathrm{~cm})$ and are sufficiently refined to drive an automatic map reader, or feed an integrated navigation system. Overall accuracies of one or two per cent Sonar Doppler operating on similar principles is increasingly used by large ships, and mariners also use depth sounding to augment their positio Airborne radar near harbour high azimuth resolution and known a synthetic aperture radar (s.a.r.) can be used for navigation by map reading the high quality returns. The high resoluradiation as from a wide aperture an enna by storing and recombining the individual signal elements from a smal antenna as the aircraft carrying this small antenna moves along its track. terrain along or adjacent to your own desired flight path, and comparing actual height from a radio altimeter ay be obtained using correlation techniques.

Satellite navigation
NAVSTAR or Global Positioning Sys em (G.P.S.) is designed to give ver ccurate position and velocity informa ystem is intended to world. The full lites in three orbits, giving visibility of to 11 satellites at 5° or more above th horizon from any location on the earth's surface.
The basic method of position fixing by means of satellites is similar t
celestial navigation except that dis tance, rather than angle provides the basic data. Fig. 4 shows the essentia omponents of NAVSTAR. The heigh the earth's radius is known and the ange is measured by timing radio ignals from the satellite. In three diensions, the range line traces a circle pon the earth's surface giving an give a location fix; and three are needed

read-out of position. World cover is achieved with eight Omega stations. with antenna design for such low frequencies: a further difficulty was the high speed of lane crossing. However, advances over the last few years have led to an increase in the use of Omega viding automatic operation with 95 per cent errors less than 3 nautical miles.
Terrain-reference navigation The Doppler navigator provides an
aircraft with means for measuring the
frequency shift of a radio signal eflected from the ground. With no drit forward angle θ to the aircraft horizon tal axis, the Doppler frequency shift $=(2 V / \lambda) \cos \theta \mathrm{Hz}$. Thus, the Dopp ler shift can provide an accurate meas ure of the aircraft ground speed, V. at an angle to the forward directio hen it is possible to measure the side ways motion or drift of the aircraft. Note that the Doppler shift is also pro portional to the cosine of the vertical
angle of the beam, hence antenna sys-
for an aircraft to include its height. Signals are transmitted on two L-
band frequencies, 1227 MHz and 1575 MHz , containing identification and the navigation data for the user to compute his position. This includes information on the status of the satellite, orbit de tails to enable the user to calculate the
position of each satellite at the time of position of each satelire at the time of
transmission, time corrections and propagation delay corrections
High accuracy can only be achieved y precise synchronization of the sate clock error must be known or corrected each space vehicle carries an atomi requency standard which is corrected at least daily with a caesium clock at the master control ground station. In term error is equivalent to 0.3 m range error.
The concept of navigation by satellite s simple. In practice however, for a worldwide system, a number of space vehicles must be maintained in accurate
orbit, constantly updated for time and orbit, constantly updated for time and
position. The user equipment includes a position. The user equipment includes a together with a comprehensive navigation computer. Nevertheless, advances in microwave and microprocessor de receivers for ships, aircraft and missiles and even a 10 kg manpack, which will ocate position to within about 10 m . A resent, GPS is in the validation phase I - about six satellites are in operation military use, primarily in the USA, and his phase will end in 1982. True pro duction of an operational system will
ake place between 1984 and 1987. Thus, ne can expect that it will be the latte onsidered a truly universal worldwid navigational aid.

Radar systems

There is an enormous variety of rada equipments and techniques, ranging military complexes.
Radar is frequently used for naviga tion, especially by ships, but here ould like to discuss a few recent inno ations affect A simple, basic, airfield-based sur veillance radar locates an aircraft by rotating a continuous train of pulses in transmitted radio beam, narrow in zimuth, and measuring the time of ight of the pulses reflected from th isplayed on a cathode ray tube or pla osition indicator (p.p.i.) ange and bearing from the radar an
There have been considerable deve opments in radar techniques since the ast war to help controllers cope wit ncreased air traffic. Early improve alpha/numeric labelling systems to utomatically track and identify target eturns. Extensive signal processin and moving target indication circuitry

Fig. 5. Autom station v.d.u.

 Perhaps two of the more recent majo mprovements in ground radar have been the growth of secondary radar for air traffic control and the evolution of he 3-D radar for military use. In hostile conditions the ability to co-operation is obviously useful, but fo aircraft which are both co-operating nd controlled, the addition of a trans ponder confers useful advantages.Secondary surveillance radar Secondary surveillance radar (s.s.r.)
similar to the military Identification riend or Foe (i.f.f.) developed during he war to protect friendly aircraft. S.s.r. orks by sending a radar pulse from an interrogating transmitter. This pulse is ponder and retransmitted on a differen requency as a group of coded pulses which include aircraft identity and a eight reading from the aircraft's mounted on the primary radar and the signals from s.s.r. are either displayed directly on the radar p.p.i. for iden fication purposes or separately pro The classic radar with the The classic radar with the rotating tion; in fact, the beam shape is designed o cover as much vertical air space as possible. For height information, a separate vertically-scanning radar anon demand. Continuing improvements in the design of microwave antennas and component design have enabled a new 3-D radar to be designed. Modern techniques enable such a system to be
fully transportable and highly reliable; for example, the transmitter valve operates at 3.3 MW to provide a $10,000 \mathrm{~h}$ expected life. The operating wavelength of this particular system is 23 cm , the range accuracy 0.05 nautical miles,
azimuth accuracy 0.5 nautical miles in 100 and height accuracy $1,000 \mathrm{ft}$ at 100 nautical miles. It has many advanced facilities such as automatic plot extraction and tracking in three dimensions, and for military operation provides a
range of electronic counter-countermeasure (e.c.c.m.) facilities including unrestricted frequency agility, random pulse stagger, pulse compression, chaff Doppler moving-target indication

The future
The ideal radar gives all-weather, clutter-free operation and as much information as possible about aircraft in the air space of interest. This is true for
both ground-based and aircraft systems, and similar criteria apply to ships' radars. The ideal navigation aid gives exact location under all operational conditions, is lightweight and simple to use. For both activities, of course,
equipment needs to be highly reliable and cost-effective. The systems described so far represent the current.

WiRELESS WORLD, JANUARY 1980
state of development and undergo con objectives.
One must, however, differentiate between military and civil use. Co operation-dependent systems, such a those based upon satellites or global transmitters, could well be vulnerable in
times of national conflict. Probably the self-contained navaid is least open to this sort of criticism if high accuracy at easonable cost can be sustained. One can fairly safely predict that semiconductor microcircuit advances navigation developments in a very significant manner. Digital processing and storage are already leading to new concepts in system organization and complex error
viously feasible.
Miniaturization of the newer solidstate, microwave power sources and other components leads to new applications. One example is for location and control of road vehicles, increasingly
important for large, commercial fleets or public utilities in these times of energy problems and rising fuel costs. The display shown in Fig. 5 us of part of the area of a map of London, where the
characteristics of each road junction

Audio

by Adrian Hope

BACK IN the early winter of 1969 the Olympia Exhibition Hall played host to fairs. Ten yonal Audio and Photo-Cine geoning trade and public interest in sound reproduction had made it tradition of to continue the post-war Russell, Washington and Waldorf hotels in London, there was still insufficient support to justify an audio-only course as hi-fi became an essential domestic luxury. Now, ten years later, we have seen the rise to dizzy heights and fall into disfavour of Olympia as a respects Olympia has been a barometer respects Olympia has been a barometer
of hi-fi trade. After 1969 the Audio and Photo-Cine Fair became the Audio Festival and Fair and then the Home Entertainment Show. It was cancelled at drew only very disappointing crowds Since then there hasn't been an Olympia audio exhibition.
The face of audio retailing has changed at least as much as the
Olympia Exhibition. At the beginning of Olympia Exhibition. At the beginning of London's Tottenham Court and Charing Cross roads sold electronic.
omponents, along with construction kits and a smattering of ready-built hadio equipment. Almost all had one characteristic in common: undisguised
impatience with the average customer It was, I suppose, understandable. There is little profit to be had from testing a alve or advising an amateur constructo the why a resistor has burned out. Soon change, for a while almost exclusively to Lasky. Profits increase because the shops started to concentrate on selling components By to the exclusion o one askings. By the mid-seventies anyspare part could expect to be treated ike a mad leper in all but a very few reconciled to the idea of buying equipment in a cardboard box from a shop assistant who might just as well have been selling washing powder o potatoes. The main culprit, som price maintenance and the consequent declaration of a competitive price war. Shops selling at cut-to-the-bone prices way of before and after sales servic the way of before and after sales service or
advice. Some dealers stuck to higher prices but offered service into the bar-
are stored in a computer in the boot of a car for automatic position fixing. lopments which are making feasible static antenna arrays where each element of the array is effectively a miniature transmitter/receiver and the beam is electronically rotated or selected. One a separate transmitter as an illuminator, with several spaced receiving systems using multi-beam static arrays. Such a system could provide enhanced protecsignal fluctuation. The US Air Fo 60oft diameter radar in earth orbit by 1985, using the space shuttle. This could be used for tracking ships, aircraft, tic missiles and even armoured vehicles on the ground.

The author thanks the technical foctor, GEC-Marish this formission

Further Reading

"Navigation Systems" G. E. Beck. Van Nost-
rand Reinhold 1971. Journal of Navigation Vol. 25 No. 2 1978. "Radar Hand-
book" M.I. Skornik, McGraw-Hill.

gain. Inevitably some customers took free advice from the high price dealer and then bought the recommended product at cut price in a cardboard box rom a warehouse dealer. Between ondon's golden mile dealers, both in the UK where the golden mile image had spread, offered intelligent advice nd reasonable service at a low price Others offered neither service nor ad ice but at high price.
It was inevitable that the bubble time, especially when money is short, when a householder with an adequate sound system will no longer go out once year and buy a replacement. Ther comes a time too when the public, resent the need to junk relatively new equipment for the want of a single spare part that proves unobtainable, or a least an expensive nightmare to proc-
ure. It is no secret that now, at the end ure. It is no secret that now, at the end
of the decade, the audio trade is in bad rouble. Spare cash now, and there is clearly less of it around, goes toward a video recorder or a second colour tv, not new stereo amplifier, record turntab or cassette recorder to replace a pergiving faithful service.
The Olympia barometer of hi-fi is not Although to be taken as gospel Although Olympia is no longer the sit don, other shows flourish. The sad truth is that Olympia now has a bad name in the audio world. Exhibitor firms have suffered once too often from what the euphemistically refer to as "union prob terms means spending many tens of housands of pounds to exhibit an finding the stand unfinished on openin day. It's also a barn of a place, in man demonstrations. But smaller shows in otels in and around London hav ways left some exhibitors or visitor issatisfied. One year in the mid seventies there were two rival shows a el. An autumn 1979 show in London was cancelled at the last minute hrough lack of trade support. Cur ently, perhaps rather curiously, the held at Harrogate in Yorkshire Thibe that so many of the trade, press and public are prepared to venture so far
orth into the provinces as to make Harrogate an annual success, while declining to give sufficient support to make a London show viable, is surely Another phenomenon of the decade has been the rise, and occasional fall, of the beginning of the decade there were just two specialist hi-fi magazines. Both had a fairly staid outlook. Then the first of the breakaway "glossies" appeared
followed by a string of several more. After various changes of ownership, a few bankruptcies, and several changes of title and direction the market now appears stable.
One theory is that the current mis-
fortunes of the trade are partly due to fortunes of the trade are partly due to
the boom in hi-fi journalism. The argument is that enthusiasts, with limited money, are now content to read about new developments and leave buying magazines like Playboy and Penthouse work on the assumption that readers are interested mainly in vicarious thrills, the hi-fi industry has so far assumed that a stimulating article on
audio will stimulate sales of the product described. As a result they have continued to keep the magazines in business by using them as an advertising
vehicle. (It is easy for the lay reader to vehicle. (It is easy for the lay reader to
forget that although reputable forget that although reputable
magazines try hard to ensure that magazines try har cont is not influenced by advertisers, every magazine relies on advertisements for commercial
viability). Although the hi-fi magazine viability). Although the hi-fi magazine
market now seems to have stabilized, market now seems to have stabilized,
with all those publications currently on sale likely to remain so, it is highly unlikely that any
uill now appear.
will now appear.
Perhaps the most notable overall Perhaps the most notable overall
trend of the last decade has been the trend of the last decade has been the
massive influx of Japanese electronics massive influx of Japanese electronics total market domination in some areas.
At the 1969 Audio and Photo-Cine Fair At the 1969 Audio and Photo-Cine Fair
there was just a handful of USA exhibithere was just a handful of USA exhibi-
tors, notably ADC, Shure and Koss. From Europe (excluding Britain) there were 15 exhibitors, including Agfa,
Arena, B \& O, BASF, Dual, Grundig, Luxor, MB, Mikrofonbau, Ortofon and Peerless. From the UK (excluding the
BBC, and several magazine and book publishers) there were over 40 companies of which only a very few were importers. Among the British names showing were Brenell, Bush, Colton, Decca, EMI, Ferguson, Ferrograph,
Ferranti, Garrard, Hacker, HMV, Leak (then still of Brunel Road, London, W3), Lowther, Lustraphone, Mullard, Dansette, Philips and Sinclair. These were in addition to currently. famous names such as Armstrong, B \& W, Celestion,
Connoisseur, Goldring, Goodmans, Connoisseur, Goldring, Goodmans, well established. From Japan, and often with very low profile, came just 14
exhibitors. Of the Japanese firms Yamaha was showing just loudspeakers
nd cabinets but Trio offered a full range of amplifiers and tuners and Toshiba, Sony and Sanyo offered tuners, amplifiers and turders. It is offered just tape recordirs. catalogue for the 1979 Harrogate Audio Exhibition. For the European electronics industry ten years has been a very long time
The last decade has seen any number
of new developments and offered, often of new developments and offered, often
foisted on the buying public. But a few have stood out head and shoulders from the rest either as a result of value which has been subsequently proven or be-
cause the passage of time has underlined their lack of consequence. But some ideas of consequence have failed, at least first time round. And some ideas of no consequence have succeeded, at least temporarily.
recap on the technology seen in the 'seventies, likely trends for the 'eighties become clear.
The 1970s
The 1970s must surely go down in
history as the decade in which surround history as the decade in which surround
sound didn't happen. In the late 'sixties engineers in the USA started to show interest in improving the reproduction of music in a relatively small domestic room by adding reverberation to simulate the sound of concert hall or large that it was not sufficient merely to remove all sound absorbent furnishing and furniture from a small room, with short reverberation paths. An artificial
long path reverberation signal had to be ong path reverberation signal had lo be speakers behind or around the listener. The 'sixties experiments sought to record and reproduce natural hall ambience, rather than simute it at the
The then-new breed of multitrack

When broadcasters finally agree a
surround format we might get
multi-channel surround sound records
from the industry again.
studio recorders provided the ideal tool to record ambience along with the main, front, sound stage. An eight-track tape cartridge or four-track tape-recorder provided the ideal medium for selling sound to the public. The record companies, forseeing a drastic drop in two channel stereo disc sales, panicked. At the turn of the decade numerous engin produce a multichannel surround sound produce a multichannel surround sound
disc that would also offer good stereo and mono.
Not to be outdone, the broadcasters addressed themselves to the same prob the apparently impossible had been achieved; a quartet of loudspeakers around the room could be fed with four sets of signals derived from a two evitable trade-offs and compromises became better understood, thinking engineers became disillusioned. So did the public not so much because of the various system deficiencies, but because of the lack of standardisation
between so many competitive systems. Wetween so many competitive systems. know that lack of standardisation on any one system was probably the best thing that ever happened to domestic
audio. If any one early 'seventies system had become a world standard we would now be stuck with it - and all its nherent inadequacies. But early in the quas surround sound reproduction (or quadraphonics four loudspeakers in the four corners of a room became tradition), looked to the marketing men like potential big business. The 1972 Con sumer Electronics Show in Chicago saw
private discontent flare into public private discontent flare into public
squabbles. While the manufacturers ried to produce reproduction equip ment capable of playing any or all of the competitive systems then available or announced, the record companies
hedged over which system to adopt. "They ought to be locked in a room and kept on bread and water until they come out with an agreement" said one
frustrated manufacturer.

WIRELESS WORLD. JANUARY 1980

At around this time a compromise
offered by American engineer David offered by American engineer David Hafler started to "ind favour. This was feeds a rear pair of loudspeakers with the difference information available across the outputs of a conventional stereo amplifier.
This simple connection provides signals for the rear, from almost any
programme material. Readers of hi-fi magazines, puzzled over which quadraphonic system to buy, were repeat-
edly advised to compromise with a Hafedly advised to compromise with a Hafler set up, at least temporarily until a
standard was agreed. Even now, long after the quadraphonic bubble has burst, many enthusiasts retain a Hafler connection to feed rear loudspeakers because, especially with programme
material recorded with a simple crossed pair of microphones, the results can be highly acceptable. There is now little doubt that every quadraphonic system marketed during the last decade is dead in its present form.
But the last years of the decade has Ambisonics surround sound technoogy. This of course stems from the work of Michael Gerzon and Professor Peter Fellgett. ating extent, by the BBC and IBA. The recent patent pool agreement between Ambisonics-NRDC, Nippon Columbia and Duane Cooper (joint holders of most of the crucial patents covering a
hierarchical approach to Ambisonics surround-sound technology) will almost certainly prove a significant influence in the next decade. In the USA the Federal Communications Commission is currently debating, yet again, the
future of surround-sound broadcasting. The signs are that the final FCC choice will be between Ambisonics and the CBS SQ system, or modern variants
thereof. Until recently there has been a hereof. Until recently there has been a fairly unified approach from the Ambi-
sonics faction. But now the IBA has raised a question mark over the validity of the hierarchical approach. Essen tially the IBA argues that the best comwhich offers good surround sound to isteners with a three-channel decoder, and good stereo and mono with existing equipment. This conflicts with the Ambisonics-NRDC approach which
seeks to offer the surround-sound lisseeks to offer the surround-sound listener the choice of using either two or limited bandwidth) reproduction equip-
ment in hierarchical fashion. The IBA ment in hierarchical fashion. The IBA
now describes the two approaches as now describes the two approaches as
"irreconcilable" so it is clear that if eighties past the laboratory stage the BA, BBC and Ambisonics-NRDC en gineers must reconcile their differences This will require the cooperation of al tests. Unfortunately the BBC and IBA have not been noted for their mutual
cooperation and have instead appeared
ince to generate competitio ven where none naturally exists research at the dever or technic admirable and in the public interest rivalry at the early stages of commercial development can only hamper the spread of a new technology. Witness th public ignorance over teletext. In fact
cooperation of the two British broadcasting authorities is essential if ever the public are to be educated into what eletext and surround sound are all bout. Is the math to hope that the eighties may see British broadcaster
thinking and speaking of new techno logies as a common vehicle for competitive programming, not as a source competition in their own right. The 1970s saw not only the emercassette as a serious recording medium but also the parallel emergence of Dolby noise reduction as a standard. Indeed the parallel progress of the cassette and Dolby system is no coincidence. With is now.
It took three years into the de cade before Philips finally agreed on licence to incorporate Dolby circuitry Until then Philips had tried vainly to interest the cassette recording world in only system. The pity of it was that DN was a useful noise limiting tool, but ertainly not an alternative to the Dolby f the decade, DNL is reappearing as an addition to Dolby noise reduction on some cassette decks. Despite the emer gence and marketing of rival nois reduction systems, Dolby B has become an integral part of cassette recording Dolby encoding on f.m. broadcasts with modified pre-emphasis to suit the frequency content of modern music and aken off in Europe. Another slow starter, Dolby's work in film sound encoding, is however starting to boom he words "Dolby stereo" now often eature as large on the publicity posters stars or director of the film.
Throughout the last ten years tap manufacturers around the world have ffered every imaginable modification of the basic iron oxide magneti coating, plus a few more besides. Fol magnetic oxides of chromium have also become popular with some tape manufacturers. Others mainly in Japan have eschewed the use of chromium cobalt-modified iron oxide particles The newest innovation, of which a few samples may reach the retail shops evore the end of the year, is tape coated original pre-war pioneering work in magnetic recording relied on iron coated tape, this material is a brute to handle at the manufacturing stage. It is

Pure metal tape is counted as the
short-term answer to digital recording But in the long term, and at today's current accelerating pace of development, this may mean only a year or so There is no doubt that the days of analogue recording are numbered. The idea of digital encoding is not new; it was
Alec Reeves of course, at STC, who proposed and patented a workable system shortly before the last war. But without solid-state switching equip ment Reeves could only theorize. By
1972 the BBC after digital sound links between London and Scotland, was regularly distributing p.c.m. sound for television and stereo radio around Britain using microwave
links. The BBC has continued through the last ten years to develop digital the last ten years to develop digital
sound encoding techniques both for the transmission of sound signals around the country and for digital audio tape recording. The IBA has meanwhile devoted considerable effort to the deveapplicable to colour video.
In the domestic area interest in digital sound has been stimulated by snowballing developments in video recording not attempt to delineate between audio and video. The two technologies are now so closely and inextricably linked

only now that a few tape makers feel the me is ripe for a full circle return to this riginal technology. Philips and 3M their new metal tape formulations. Bu their announcements have backfired Philips has at least temporarily pulled tape and 3 M , after proudly announcing the product in June 1978, is still unable to supply more than a few cassettes to a likely selected dealers for retail sale. It is likely however that the first years of the plentiful supply. Certainly within a year or so virtually every respectable cass ette recorder will be equipped with recording heads and circuitry capable of
coping with the new high coercivity material. But all the manufacturers involved in tape production are agreed that the cost of pure metal tape will always be higher than oxide tape (currently around four or five times as exwhether the public will actually pay the extra for the new wonder medium when it is on open sale and readily available.
the
\qquad
\qquad
\qquad
\qquad
\qquad 4 $=$ 13

\qquad

54
that the future of one is dependent on the other. It was in 1972 that Philips first
announced a video cassette recorder announced a video cassette recorder
capable of recording colour tv pictures and sound on a cassette of half-inch tape. Although the original N1500
machine was intended for the industrial machine was intended for the industrial launched for - albeit limited - open sale to the general public. This started not only the domestic video revolution
but also the inexorable move toward but also the inexorable move toward
digital sound. Any recording system capable of handling the four or 5 MHz necessary for colour video is more than capable of handling the bit stream necessary for stereo or multichannel cade of work into video reproduction from discs, which culminated in the USA test marketing launch of a practical video disc system by PhilipsMagnavox in 1979, brings the digital
audio disc a step closer. Philips has of audio disc a step closer. Philips has of
course already shown the compact disc, or digital audio version of the Philips VLP video disc, and toward the end of 1979 announced a patents liaison with Sony. Sony had independently deveto that proposed by Philips. With the to that proposed by Philips. With the
union of Philips and Sony standardization of a laser-read optical video disc comes a step closer. Almost certainly
the Philips-Sony union will bring the Philips-Sony union will bring agreement on a digital Compact Audio
Disc smaller than the 30 cm proposal made by Sony and larger than the 11.5 cm diameter chosen by Philips for the compact disc. Very probably a
digital "compact audio disc" of around digital "compact audio disc" of around this will almost certainly not herald world standardization. JVC still sticks hard with its different, and quite incompatible, capacitance-read groovegrooved capacitance disc. Matsushita has proposed a grooved disc which is read by a mechanical pressure-sensitive stylus similar to that developed by cade and briefly marketed at the Teldec TeD video disc. It is now known that Teldec has a miniature digital audio disc version of TeD. This Teldec Mini Disc is ready to launch in Europe if and when right. Without doubt there are many bitter battles ahead before there can be world standardization on the digital audio disc. These battles will delay standardization and give impetus to the
short term stop gaps such as metal tape. There is also a move toward $45 \mathrm{rev} / \mathrm{min}$ long-playing analogue discs. It is argued
that their higher rotational speed, that their higher rotational speed, coupled with the long playing time per side offered by computer-assisted cutalbum a shot in the arm
Casual observers talk vaguely of some wholly new, as yet undreamed of, storage medium to replace the tape or
disc. Without doubt it would be possible to encode programme material in

Cassette recorders for the 'eighties will have bias and equalization for metal-particle tape but will the public pay
the extra price? holographic form. But the idea of a chip or memory, storing an hour of proremain a dream for at least the next decade. Although high density memories with fast access time are available, a few moments calculation is sufficient to show that solid-state memories have a long way to go before
they can offer the equivalent of an LP record in real time. Prophesies, especially in such fast-moving times, are always dangerous, but it seems a safe bet that for the next ten years sound and reproduced from, a moving strip of magnetic, capacitive or optical material or a rotating disc of similar characteristic.

The speed with which a new storage medium becomes a commercial success
and gains acceptance as a household
norm, will depend entirely on the behaviour of the companies involved in the development and promotion of such a new medium. Rapid agreement on
digital encoding standards and storage techniques could bring a new record medium into the home within a couple of years. But behind the scenes squabbling, similar to that which killed off the quadraphonic systems cours of a transition from analogue reproduction until at least the mideighties. But as we learned from the quadraphonics fiasco this may not necessarily be a bad thing. Currently
the signs are that the strong US and the signs are that the strong US and
Japanese influences may impose on us world coding and sampling standards for digital sound reproduction which are tied to local tv standards. These could well prohibit or make expensively
difficult, the exchange of recorded audio material between continents. Certainly it would be an appallingly retrogressive step. Moreover in their enthusiasm for a new generation of recording and reproduction techniques,
engineers at laboratory level appear to have overlooked, or at least brushed to one side, the very real problems of mass. producing high-density storage programme material in reliable quality as
well as quantity. well as quantity. After one hundred
years of analogue disc recording, there are still all too few record pressing plants capable of producing a respectable audio disc pressing. With track spacing between 50 and 100 times tighter in digital or video programme
storage the importance of producing blemish-free pressings becomes paramount. The video and digital audio systems that succeed in the long run may well be the system for which it gramme material.

H.f. radio communication

by R. F. E. Winn B.Sc.(Eng.) FI.E.E. Racal Communications Ltd

Advances in component technology and new design concepts during the past decade, together with projected future developments, ensure that h.f.
radio communications will retain importance well into the twenty-first century. In particular this is true of the maritime mobile service where satellite communication is still in its embryonic
stage in developing countries where stage, in developing countries where
the economics of h.f. point-to-point working with low traffic density are attractive, in defence (as a back-up if not always primary system), and in emergency use where air-transportable deployed. As well as advances in tech-
nology in recent years there has been a better understanding of the vagaries of propagation. Tion in predicting maximum usable frequencies over various paths during the 24 -hour day at different seasons and during sun-spot cycles.
For medium and long-haul communication h.f. radio today is still an econ
tion.
Receivers of the 1970 s . The most significant technical changes have been ideas, coupled with newly available

WIRELESS WORLD, JANUARY 1980 components, converged to provide by early 1970s a completely new orde rance and ease of of overall perfor mance and ease of operation, Before 1970s it is helpful to look briefly at two previous generations of receivers. In the immediate post-war years the ost exciting development was the Wadley Loop. Although a tricky con cept, demanding skilled mechanical as well as electrical design, it was suc essfully implemented in the now cassic RA 17 receiver, made by my still in daily use throughout the world. For the first time it had become possible to tune to a given frequency and leave the receiver unattended with rea onable confidence in its frequency stability over extended periods. 1960s with the change from thermionic valves to solid state devices. Early examples were heavily influenced by the previous valved designs, and although greater ingenuity was
sometimes achieved they were little more than an exercise in re-engineering using transistors in place of valves. The advantages were reductions in weight size and power consumption and an Overall performance, however, was disappointing and, in general, the best of the first generation of solid state receivers were inferior to the best of the valved sets. There

- advantage in price.
A parallel development in the 1960 s was the frequency synthesizer, which generated a wide range of frequencies each with a stability equal to that of a single master crystal oscillator. This
was seen as an elegant substitute for the often troublesome free-running local oscillator in superhet receivers and as a simpler solution to drift than the

Wadley Loop. Unhappily the early synthesizers brought their own problems in the shape of unwanted intermodulation products generated by the interna
mixers, adders and dividers. The ad mixers, adders and dividers. The ad
vent of the digital synthesizer provided a cleaner output and today's units are capable of excellent spectral purity. The early synthesizers also suffered from the operational disadvantage in that
frequency was selected through decade frequency was selected through decade
switches. Excellent if the exact frequency of a wanted signal was known, but hopeless for "searching" This problem was overcome later.
With so much new technol With so much new technology be-
coming available, engineers in this field came to the conclusion that a radical re-think on receiver design was overdue. Not only on how newly available technology and components could be aspects of performance and but also all modern conditions. The starting point was a statistical analysis of their occupancy of the h.f. frequency spectrum in terms of density and types of signals, which would give a clearer indication of how a receiver needed to perform in order to use efficiently the 9,000 or so 3 kHz channels available. An analysis was made by a computer in my comexercise was carried out by B M. Sosin of Marconi Communications Systems. It had been realised that the most significant limiting factor in receiver performance was linearity. Selectivity was as important as ever but the
emphasis on front end sensitivity which had been a paramount feature of design for the past 50 years had come to the end of its usefulness and no further gains were n
in this area.
It was found from the analysis and measurement that high powered broadcast and commercial stations

were generating tens, in some cases hundreds, of millivolts at the antenna terminals when received on large collecting systems. The strong signals were generating a large number of intermothe appearance of liveliness in the receiver yet masking weak wanted signals. What was required was a big increase in dynamic range together
with extreme linearity, and the key to the problem of intermodulation products was to work out the linearity of previous receivers and to discover what level what level.
The first range of solid state receivers 1970s was the RA 1770 series, of which the RA 1772 general purpose receiver will be discussed. straightforward double conversion superhet but with a number of novel features which provided a performance with respect to dynamic range, intermixing, cross modulation, reciprocal spurious response far superior to any other receiver then in production. This
rig. 1. Block diagram of the RA 1772 general purpose receiver. 72
\cdot
 1 4 in 1 1 7 . .

was achieved through using a single
linear broadband r.f. amplifier, a double-balanced hard-driven fast-double-balanced hard-driven fastmoderate gain at the first i.f. of 35.4 MHz with the main gain in the se
amplifier operating at 1.4 MHz .
The new order of performance at first The new order of performance at first
caused some confusion. First comments on the development models, later echoed by the first customer, were apparent lack of sensitivity because there were far fewer signals. Repeated
tests with a signal generator were necessary to convince ourselves that the design sensitivity had indeed been achieved and that the "emptiness" of the h.f. band was due to the elimination of spurious signals and not lack of band
activity or insensitivity. Apart from the redistribur
throughout the receiver the most notable advance in achieving the new performance was the use of a high first i.f.
of 35.4 MHz . This became possible of 35.4 MHz . This became possible
through using a high stability digital through using a high stability digital
synthesizer which also provided adsynthesizer advantages. It was now no longer necessary to employ the
traditional tuned r.f. preselector traditional tuned r.f. preselector amplifier ahead of the first mixer to
eliminate image signals. There were no tracking problems associated with a linear broadband amplifier so the front end was greatly simplified and this, in turn, helped open the way to remote control.
As a general purpose receiver, the set
needed a free-tune facility and this was needed a free-tune facility and this was coder on the tuning knob which proided electrical pulses and directional 100 Hz (fast) or 10 Hz (slow) intervals up or down giving the operator all the "feel" of the familiar v.f.o. but with ynthesizer stability. The tuning knob he receiver on any particular frequency. The digital frequency readout, derived from the local oscillator, although at first disliked by operators accustomed to dial and pointer indica the synthesizer was to be exploited operationally. No traditional mechan cal analogue dial could achieve a resolution of 10 Hz at 30 MHz and even he most conservative of the old
Another innovation was to provide complete receiving terminal in a single case instead of extending facilities with add-on adaptor units, which, in the past, had frequently resulted in a 6 ft high
rack of equipment. Provision was made for six internal filters which could be fitted at the customers' choice. The filters were selected through transistor switching controlled by d.c. only from the potentially troublesome mechanical switching of r.f. circuits from the front panel but also simplified remote control. Although an earlier receiver had

Fig. 2. Solid state 1 kW transmitter
it was decided in the interests of economy to use conventional construction in the RA 1770 series but the physical configuration allows al by test gear for fault diagnosis while the receivers are in an operating condition. By the mid-1970s the series had been extended to include programmable and remote control receivers. The program-
mable set, in addition to continuous tuning at three selectable rates (10 Hz , 20 Hz or 1 kHz), had twelve programpanel switch
panel switch.
The receiver for extended or full remote control is in two units, the panel except for local test facility, and an associated remote control unit with all the front panel controls. The receiver is triple conversion with the third i.f. a 100 kHz . Apart from a spin-wheel tuner and rotary controls for b.f.o. setting and the remote control unit are selected by push-buttons. Control is exercised by a time-sharing data-multiplexing system which converts parallel control infor-
mation into serial form for transmission over single wire lines. For extended control of all receiver functions three cable pairs are required. For full remote control over virtually any distance standard data modems ane four-wire telephone circuit.
The system enables complete receiving systems to be built in which a single operator with one remote contro nit commands several remot receivers.

The next ten years

Both technical and economic gains are anticipated in the decade ahead and in fact are already being realised. The market is highly competitive and it is clear
that design trends will be towards better that design trends will be towards better specification and more facilities per unit A

A positive example is an m.f./h.f. London which made its public debut in London in October 1979. It is a joint
Anglo-American development and substantial orders have already been
received from the US Air Force. The receiver (Fig. 3) has the overall perfor-

mance of its predecessors at a far lower price, achieved largely by more func-
tions per integrated circuit and therefore a smaller number of components. It is a double conversion superhet with the first i.f. at 40.455 MHz and the second i.f. at 455 kHz . Frequency and receiver status displays are liquid crystal and
all functions are push-button selected, control being through a microprocessor.
The important innovative advance is the synthesizer. In the RA 1772, de-
scribed earlier, there were five circuit loops constructed on four printed circuit boards. In the new receiver a single loop synthesizer occupies only one board and as well as generating the of 1 Hz (previously 10 Hz resolution) it

also generates the b.f.o. output in 10 Hz teps. Because of the single loop design pectral purity because all mixing has been elimina because all mixing has frequencies are being generated. The unit is based on an 1.s.i. m.o.s. chip developed by Racal Microelectronic Ltd which achieved 1 Hz resolution by synthesizing phase as well as frequency The UK version has a 100 -channel remote control system. The US version has IEEE 488 input/output interfaces as standard, but both versions can be dapted for other interfaces by softwar changes.

Fig. 3. Anglo-American m.f./h. receiver. This recently introduced model uses a microproc
new synthesizer.

The synthesizer mentioned above is also employed in a military wide-band
receiver where it is used to cover the receiver where it is used to cover the,
h.f./v.h.f. spectrum continuously from 2 MHz to 512 MHz .
On the transmitter front the advances
that one will see in the 1980s are less that one will see in the 1980s are less
spectacular but none-the-less worth-spectacular but none-the-less worth--
while. A second-generation 1 kW solid while. A second-generation KW solid which, allowing for losses in the com-
miners, delivers a full 1 kW to the miners, delivers a full 1 kW to the
radiating system. Linearity has been further improved so that for the first time the CCIR recommendations for intermodulation products have been met over the whole of the h.f. range. Looking further ahead there are two
great hopes. One is v-m.o.s. devices great hopes. One is v-m.o.s. devices
which could provide much greater hearty than current bipolar devices, and of greater efficiency. The second is the feed-forward or polar loop concept on which research is being conducted at
Bath University. If successful, there is a Bath University. If successful, there is a
promise of solid-state transmitters promise of solid-state transmitters
comparable in efficiency and linearity with current class $A B$ vacuum tube amplifiers.
On a more immediate note the world demand for low-cost channelised trans-
miters continues unabated, and it is now becoming apparent that the conventional channelised drive unit may well be displaced by a programmable synthesizer on economic grounds. With
modern technology a synthesizer is already comparable in cost with a 10 channel crystal drive unit.
Receiver performance has now reached a new plateau but the applica-
ion of the microprocessor will provide tron of the microprocessor will provide
considerable refinement, resulting in more "intelligent" units in both systems management through remote control and in the receiver itself. For example, there is the self-adaptive receive of signal it is receiving and automatically adjusts itself by minor frequency shift and selection of appropriate filters and demodulators to the transmission intervention. If on c.w. it would probably select the narrowest filter and adjust the b.f.o. frequency for a pleasant tone, and audio gain to a convenient level, for recording or operator con-
venience. If s.s.b. is detected then the appropriate upper or lower sideband filter, and so on. The microprocessor will also be used for routine self checking of sensitivity and other parameters
The newer techniques pioneered on h.f. are already producing a spin-off at
higher frequencies, particularly the concept of a high first i.f. which opens the door to broad band pre-mixer amplification. High stability v.h.f. synand u.h.f., thus enabling more efficient use of the spectrum as has happened on hf.
We may also expect new forms of
modulation which will help overcome
he inherent limitations of ionospheric propagation. There could be re-births such as the Piccolo system, where the advent of solid state circuitry has made much wider application
Work is currently being conducted on topics such as time encoded digital speech at 2.4 kilobit /s and, though fresenties, few professionals doubt that
och developments will eventually prove successful and further Although for purposes of illustration the practical examples quoted are al from the author's own company, he gladly acknowledges parallel work in other countries which, through pro
fessional cross-fertilisation, will con tinue to advance the art and science of h.f. radio.

Electronic measuring instruments

by John L. Minck Hewlett-Packard Company

Progress in instrumentation is a result of at least three driving forces: the such as fibre-optic communications and satellite technology; 'breakthroughs' in component technology, such as microprocessors or microwave, hybrid lions of present instrumentation, such tions of present instrumentation, such
as the remarkably successful IEEE-488 interface bus for programmable sysinterface
terms.
Very
Very often, progress is really an intricate combination of all of the above. In so many cases successful instruments throughs', but merely embody the right combination of customer requirements. With few exceptions, most of the com-
ponent technologies were already in ponent technologies were already in
place at the beginning of the decade. Digital, analogue, and microwave integrated circuit techniques advanced substantially, but the primary technology was already there

The 1970s

Dramatic progress did take place during the 'seventies. Probably the most important new developments were of logic analysers and logic design instru-

ments. The earliest of these, typified by the HP 1601L introduced in 1973, was nothing more than a stand of
oscilloscope display with columns of and ls. An early serial data analyser, the HP 5000A, permitted diagnostics on played on rows of l.e.ds.
In the six years since, the progress in logic analysers and microprocessor design instruments has been nothing less than breathtaking. And none too soon
either, because relentless marketing pressure is pushing microprocessors well beyond the obvious applications in calculators and communications into appliances, toys, electric organs and motor cars. Design, qualification, pro-
duction test, maintenance and service all need these measurement tools to work with microprocessors and digital circuitry.
One common theme of the 'seventies for most classes of instrument was that
requirements moved two ways at once. Thus, the market called for smaller, more portable and less expensive models at the same time that other models went as far as technology would
allow, with highly complex and powerallow, with highly complex and powerprice tags. An example of the former is the low-priced, digital voltmeter, while the high-priced example is the HP 3455A, a high-precision, system d.v.m.
Oscilloscopes handled higher Oscilloscopes handled higher
frequencies and became both smaller and more portable, while others became much more powerful and complex, using microprocessors to measure
digital time delay or rise times. digital time delay or rise times.
Waveform, pulse and function generators tended to go in only one direction tors tended to go in only one direction

- towards smaller and cheaper designs, - towards smaller and cheaper designs, lions. It's amazing how much waveform package these days. The more complex package these days. The more con ts were the word and coded-pulse instruments tions technology and fibre-optics.
Rf. and microwave. Rf. and microwave instruments entered the 'seventies with great promise. In 1970, hybrid microcir-
cuit technology and the design procusses using scattering parameters were in place, ready to supply the building The results were truly astounding. The microprocessor has made the difference - about half the circuits in many microwave instruments are now digital and it comes as no surprise that about digital and software designers.
A typical result is a newly-introduced synthesized signal generator. The $10 \mathrm{kHz}-1280 \mathrm{MHz}$ signal spectral purity of this generator rivals the best cavitytype generator of previous years, but it-
is also fully programmable and frequency agile ($500 \mu \mathrm{~s}$ switching time). The real contribution of this very expensive generator is in the design of the
front panel controls. The mostly digital front panel controls. The mostly digital microprocessor, which does all the circuit and signal control, making things extremely easy for the operator For example, he can set up ten comditions, store each, and recall them at the push of a button.
Another example of this "smart" type of microwave instrument is a recent from power switch-on, the machine runs through 30 self-tests and draws its own graticules and titles, and provides powerful measurement routines which are far beyond usual manual testing. Self-tuning routines bring identified
signals to the centre of the screen and read out frequency and amplitude digitally. Sweep speed, bandwidth and resolution are automatically seiected in program to prevent errors and ease the functions capture information digitally

show historical peaks. Six sets user-defined front panel set-up condi Powerful diagnostic routines and dis plays aid maintenance people. This new measurement capability can't be appreciated by reading about it. On must sit down in front of such machine for about an hour to grasp it
significance. For example, if the spec rum analyser is connected to a receiving antenna, all background spectrum accumulated for a given period can be used to cancel a given hen show only new signals which show then show
up later.
Ref. ne
Ref. network analysis finishes the 'seventies with a typical instrument measures, calculates and displays 500 kHz lex impedance transfer functions roup delay, deviations from line phase, etc. It's about all the design power an ref. design engineer needs.

In instrumentation, the 'seventies brought one development which prob ably overshadows all other advances in
instrument techniques - the IEEE-48 bus. Interestingly, the IEEE bus was no technological breakthrough; it wa really more of an organisational and political advance. A simple data party
line allowing automatic control of in sine allowing automatic control of in ions has revolutionised measurements already: over 700 instruments and con rollers from over 160 manufacturers he bus. Engineers now think in terms of automatic measurements for labs and production and maintenance uses.
Servicing. Finally, in the late 1970s, a ore coherent strategy for dealing with emerging. Early attempts at field diagnosis and repair of 'digital' board placed the emphasis on changing the board. When the total number of in struments in service was small and
widely scattered, the organisation to make this feasible was difficult. One solution gaining rapid accept ance now is a design strategy based on signature analysis of digital circuitry Instruments with a high content of
digital components are designed with a certain portion of the microprocessor set aside to be used in fault diagnosis. In that test mode, the instrument circuitry is forced through a switching procedure
which causes each digital circuit node which causes each digital circuit node or pin on a digital logic pack to produce
a sequential stream of 0 s and 1 s . That repetitive pattern is unique to that pin of a good instrument. Thus a signature analyser like the HP 5004 takes a bit stream as long as 2^{16} bits and compre-
sses it into a 4 -digit alphanumeric display. Instruction manuals and test procedures are written to measure and assign a unique 4 -digit signature number to every digital circuit pin.
Technicians can quickly troubleshoot right down to a component level, picking out faulty i.c. packs with little trouble and alleviating the serious problem of stocking complete prc.

The future
Forecasting the future is always risky, instrumentation are already apparent from the most recent offerings.

Fig. 3. 110 MHz spectrum analyser employs digital storage, a television type splay and automatic operation to give easily.
fig. 2. Synthesized signal generator provides precision ref. signals and, being
bus-controllable, may be incorporated bus-controllable, may be incorporated
 easily.

Alternative digital methods will con-
tinue to invade analogue and r.f. techniques. For example, instead of a superaccurate, flat-frequency-response r.f. attenuator for use in signal generators, a signal generator will use a
moderately-accurate but highly stable one: a highly-precise calibration table stored in memory then corrects the output signal. This is effective and inexpensive so long as there
microprocessor available.
It seems quite clear that analogue and radio-frequency circuit techniques will be further eroded by digital methods. As faster analogue-to-digital converter components come along, instruments
will sample and convert signals to will sample and convert signals to
digital form further forward in the digital form further forward in the may be more commonly generated by digital waveform synthesizers. For
example, oscilloscope sweeps would be example, oscilloscope sweeps would be
much more accurate if generated much more accurate digitally by a clock whose frequency digitally by a clock whose freque
was referred to a crystal standard.
Systems. Systems engineering will call for new initiatives in measurement
which will create new instrument conwhich will create new instrument con-
cepts. Communications systems are moving rapidly to digital modulations. Signal simulators will be needed for generating phase-shift-keyed modula-
tions for satellite work as well as tions for satellite work as well as
frequency agile signals for the new military communications and the cellumar mobile telephone technology.
Fibre optics technology's on-rush into communications, in spite of its highly optimistic projections, has been
underestimated: few people really see its impact clearly. The bandwidths of communication power to be unleashed by fibre optics will revolutionise not change instrumentation. Fibre optic data links can already link IEEE-488 bus

Fig. 4. Each pin of a digital i.c. pack has a unique 4 -digit signature displayed and
referenced in the repair manual allowing diagnostics down to a component level.
instruments. Computer and terminal links as well as medical data transmission with no ground loops are just the beginning. These technologies will call
for design and test equipment not yet for design and test equipment not yet
envisaged. More importantly, they will call for new concepts in measurement. The computer system technology will have memory and processors in every corner. Instrumentation will more than
adapt: there is very heavy interaction adapt: there ic very he instrumentation and the semiconductor revolution itself.

Fig. 5. Logic analysers for design of microprocessor-based everything will industries outside electronics.
 assistance in lab. projects becomes crucial. Engineering productivity in the 'seventies, automatic test equipment found willing ears for proequipment found wiling ears for prowas easier to justify.
The 1980s must attack the design side of things. Technology moves so fast,
that any lab. project which lasts longer than three years is going to produce a product with old or obsolete technology. As a result, there will be a steady
proliferation of IEEE-488 bus miniproliferation of IEEE- 488 bus mini-
systems in laboratories. New instruments will appear with more operatorinteractive controls and displays which interact, compute, correct and translate into your terms.
Complicated measurement procedures will be captured in software so the
same tests can be re-run two weeks later. Suppose you run a particular test as you complete your circuit breadboard. Two weeks later, after modifications, you would like to recall the same as they were, run the test and compare the data to the previous test. This may sound a little like the HAL computer from the movie 2001, but it isn't; the technology to do that is here now in
IEEE-488 bus systems. Now just contemplate individual instruments doing much of the same.
How will we maintain all this equipment? One computer maker recently
proposed throwaway p.c. boards as a proposed throwaway p.c. boards as a
repair strategy; that might happen. repair strategy; that might happen. test programs could well give a substantial advance in reliability. But the usual reaction to that is to pack even functions, putting instrument reliability back where it started. Smaller, lower cost, highly digital instruments will get more reliable. Larger, more complex, high priced instruments will hold their own on reliability. The most likely
course will be a combination. With maintenance labour rates bound to increase, there may be some trends towards the throw-away-type repair on very low-priced instruments. In highercontain more self-test and diagnostic capability, under control of its own microprocessor: that trend is already apparent. Then when the self-test has
isolated problems to a given module or isolated problems to a given module or
p.c. board, the digital signal analysers. p.c. board, ter.
will take over

Instruments in ten years will still consist of printed-circuit mother boards and plug-in modules. But p.c. board testing which has focused mostly on
production functions may gravitate to production functions may gravitate to
maintenance depots where repair quantities can justify the cost. The new super-flexible automatic board-test systems are becoming attractive be
cause of their remarkably low prices. cause get ready for some technically exciting times. The surface has barely

NIEWS OIF TTHIE RTONTMM

"Make way for engineers"IERE president

The normal fabric of British life will have to be substantially changed, claims Professo
William Gosling of the University of Bath, we are to create an engineering profession
adequate to the needs of our society. Giving adequate to the needs of our society. Giving IERE, he said that we urgently need "an elite corps of engineers, particularly electronic engineers, who will be as able, perhaps abler, than any others in
most talented people to seek such a life, society will need to use the only inducements which have ever been known to work,
namely honour, prestige and wealth. They namely honour, prestige and wealth. They
will also need a good 'second division' of

"Engineers want statutory registration"-survey

A survey has revealed that professional
electrical and civil engineers are overwhelmingly in favour of a statutory registering authority for the profession. The survey, carried out by of the Institution of the Institution of Electrical Engineers, ques-
tioned IEE and ICE members on their attitudes towards their professions,
standards, and the way qualified engineers standards, and the way qualified engineers
were perceived by society. It found that 92 per cent of IEE members favoured registra-
tion while the figure for the Civils was 87 per cent. The registering authority should be
responsible for the registration of professio nally qualified engineers (said 92 per cent IEE, 93 per cent ICE) as well as exercising control over the standards of education,
training and qualification (80 per cent IEE, 72. per cent ICE) and professional conduct and
discipline (78 per cent IEE, 79 per cent ICE) Virtually all members questioned believed that the registering authority should have
the right of sanction against an individual if professional standards were not maintained.
It should be compulsory for all professiona It should be compul sory for all professional
engineers to become registered (said 58 per cent IEE and 65 per cent ICE). A further fifth
thought registration should be compulsry thought registration should be compulsory
above a certain level of responsibility. Howabove a certain level of responsibility. How
ever, if registration wasn't made compulsory ter, if registration wasnt made compulsori
then 79 per cent (IEE), 71 per cent (ICE) said
they would dapply anyway they would apply anyway.
Not only did the majority favour registra-
tion but 67 per cent of both institutions believed that work requiring a high degree of responsibility should only be undertaken by
registered engineers. When it came to the registered engineers. When it came to the
way the profession was perceived by the Wublic, 97 per cent (IEE), 98 per cent (ICE)
ptated that "the public have little knowledge stated that "the public have little knowledge
of the engineering profession." On the ques-
tion of pay 91 per cent (IEE). 88 per ces ICE) said that they believed they were paid
less than others in sinilar profesion
whelming majority stated hat engineers had achieved a higher pro
essional status abroad than in the UK. The questions were posted to a random
sample comprising 4,400 corporate member sample comprising 4,400 corporate members
of the IEE and 600 of the ICE and the overall of the IEE and 600 of the ICE,
response rate was 52 per cent.
hat the rewards must be markedly
ers and technicians. At each level of employment the appropriate rewards $-\tan$
gible and intangible - to secure the quality and numbers to meet our social needs must be forthcoming. Such things are not achieved heaply, but only by the diversion of
resources in the appropriate direction. Since the wealth of society cannot immediately ncrease, even with the most favourable
industrial policies, we are faced with a stark logic. If we need better engineers, more able to facilitate the creation of wealth by in
dustry, we must make that care austry, we must make that career mor

Mrpove. Putifne very besteng iners gro engineers, the trade union members and the arts graduates, must for a time see their posperity grow less rapidly than would hurde for us ull to to get over, particularly in a society largely run by a collusion of arts
graduates and trade unions, which has deve graduates and trade unions, which has deve-
loped a marked predilection for living on its seed corm." In a reference to the Finniston inquiry into
he engineering protession, Professor Goshe engineering protession, Professor Gos come out of this will change overnight the whole status and remuneration of engineers.
"Maybe if engineers could beorganised into a
. tight and monolithic union, and if they ex-
ploited their power ruthlessly and without regard for others, a change of that magnitude
could be achieved. So far, engineers have for the most part not shown that willingness to unionize themselves, nor yet to their credit
the extreme degree of ruthlessness militancy. We may be sure that what they have not been prepared to organize themselves for and force from society, they will altruistic recognitio for some kind of altruistic recognition of
in that kind of world."

Japanese see opportunity in Prestel

Only a month after Prestel, the Post Office'
viewdata system, started as a full public service (December 1979 issue, p55), th Japanese firm Sony displayed in Londo
some equipment it has specially develope and manufactured for this information retrieval service. Shown by Sony (UK) Ltd a he Professional Viewdata Exhibition in television terminals using the famous Triniron tube (December 1971 issue, p.587), on alth a simple keypad and the other with a full possible on these terminals. The equipment was developed at Tokyo and at the Sony UK) manufacturing plant at Bridgend,
Wales, and is assembled at Bridgend. Speaking of his company's involvement in Prestel, Mr Kazuo Imac, of the Commercial and Industrial Division, said: "As well as meing the first Japanese company to develop
Prestel equipment, we have considerable investment in viewdata technology and this Prestel equipment is only the first of many
developments to come." It will be remarked that this Japanese company seems to show considerably more enthusiasm for the system han the television set manufacturers in the
country where Prestel was born. The British country where Prestel was born. The British supplying viewdata receivers ordered for th
test service started in September 1978 .

Four companies, Mullard Ltd, Genera instruments, Texas Instruments and VG Electronics, demonstrated the British ember 10 and 11 . The object of the presentations was to show the advantages of the ystem's components and sub-assemblies to Japanese setmakers who undertake, or plan
to undertake, the manufacture of suitablyundertake, the manufacture of suitably
adapted tv receivers in the UK or Europe The presentations were organised by the British Overseas Trade Board. The Sony erminals mentioned above in fac
ard viewdata integrated circuits.

Arts competition

The Royal Society of Arts is including an
audio-visual presentation in its $1979 / 80$ Design Bursaries Competition, which this time he audio-visual presentation section sudents and young designers are given the opportunity to develop their technical skills
and to apply their visual imagination to animating a sequence of ideas by means of
lasers, holograms or any other audio-visual lasers, hol
method.
Further information may be obtained from the Royal Society of Arts , John Adam Street,
Adelphi, London WC2N 6EZ.

Hospital paging using synthesized speech

A new microprocessor-controlled radi
paging system, recently installed by Mul paging system, recently installed by Mul
titone Electric Company Ltd at Frenchay Hospital near Bristol, includes synthesize speech. Multitone's ACESS 1800 paging terseveral group alert sections of staff and considerably speed up the connection of on member of staff another by telephon ACCESS 1800 enables simultaneous calls to be made to as many as 12 team member in up to ten teams including the card, and major accidents and fire teams. A member of staff can locate any receiver holder by simply followed by the receiver number and the caller's extension number. He may then han p the phone. A bleep wil be heard by the will then hear a synthesized speech message giving the caller's extension number. The
switchboard is not involved in this at all. The cardiac arrest team can be alerted and mustered within seconds to a particular ward by lerly, the mobile resuscitation unit can usually be mobile in about 30 seconds from the origination of a call from the switchThirty calls may be stacked in the computer's memory and automatically processed

in sequence, even when interrupted by a priority call. Any temporary change of programmed into the memory, which will when the original, unobtainable number is
dialled. If one doctor is unobtainable a second on-call doctor can be summoned
automatically in his place. This call transter system eliminates the need to inform all staff exchanged.

Pseudo-direct satellite

speculation

Mr Pat Hawker of the IBA, speaking as
'devil's advocate' - his own words - at meeting of the Society of Cable Televisio Engineers on October 16, posed the question company in Luxembourg were to use a lower-power satellite positioned at $19^{\circ} \mathrm{W}$ (the orbital position allocated to Luxem bourg, France, west ermeny atc.arrying a
appropriate 12 GHz channels and cary stream of bought-in programmes in the English language?" Speculating, he said,
"Such transmissions would be picked up in the UK."
small number of enthusiasts, according to Mr Hawker, would undoubtedly be cap-
able of making their own equipment to receive these transmissions, either directly or for community distribution. For good quality reception, he said, they would need efficient
satellite receive-only terminals with - for 12 GHz - possibly $1.5,2$ or at most 3 metre dish aerials and these, while requiring greater
profile accuracy, would not necessarily be profile accuracy, would not necessarily be
any more expensive than the 4.5 metre dishes used in the USA. According to a recent press report, he said, enthusiasts in North America
had managed to receive tv from Westar and had managed to receive tv from Westar and
Satcom Systems, mainly to mining and Satcom Systems, mainly to mining and government officials had estimated that 50
unlicensed stations were involved, but their unicensed stations were involved, but their
operators were not shut down because the government had difficulty in locating them and there was a genuine danger, according to
an official, that the lumberjacks and miners
ould resist with force.
Reminding his audience that Radio
uxe awker pos had been carried on cable, Mr British cable networks be permitted to disribute programmes from France, West Ger many or Luxembourg?"
"It would need Home Office approval," he
said, "but as Erik Jurgens, chairman of the said, "but as Erik Jurgens, chairman of the
vetherlands Broadcasting Corporation ha Netherlands Broadcasting Corporation has
pointed out, there is Article 10 of the European Convention. This states: Everyone has the right to freedom of expression. This and to receive and impart information and
deas without interference by public ideas without interference by public
authority and regardless of frontiers. This Article shall not prevent States from requiring the licensing of broadcasting, Hawker suggested that such an Article posed
Hand legal questions which only experts could answer, and that it was possible that no two experts would agree on how this might be from other members of the EEC and where no copyright protection was sought. If cable operators could distribute programmes in
such a manner, it would open the way for programmes and advertisements which did not conform to BBC or IBA conventions,
guidelines and regulations - de-regulation of guidelines and
broadcasting.
rat
Pat Hawker made it clear that the views
expressed were entirely his own and no expressed were
those of the IBA.

CA for CB

The Consumers' Association have come out in favour of introducing a citizens' band radio the arguments for and against in the November issue of their magazine Which? country may not save many lives, nor may it country may not save many lives, nor may it
be the best way of relaying traffic informabion. But it could provide an easy-to-use relatively cheap method of communication
that many people would find useful to have that many people would find useful to have
on occasions. We'd like to see it available here, if the problems of interference can be The Asso
The Association maintains in fact that the
possibility of interference with other elec tronic equipment is the only serious argument against the introduction of c.b.: "The
system of transmission used in most other countries would certainly cause interference and shouldn't be used in the UK. There are other systems (e.g. v..h.f./ f.m.) that would be
much less troublesome - but the problem of interference is undoubtedly important, and more research is needed to ensure th,

SERT move

he Society of Electronic and Radio Technicians moved to larger offices on Novembe
10, 1979. Its new offices are at $57-61$ Newing ton Causeway, London SE1 6BCL. The Society occupied its pre
Faraday House, since 1968 .

German press

 considers higherfrequencies for c.b.
Conditions on the 27 MHz citizen's band are giving users cause for concern and every yay
there are new calls for better operatins here are new calls for better operatin
conditions. The German electronics journal Funkschau, therefore carried out tests an compared some alternative bands to get
acquainted with the advantages and disad-
vantages of vantages of each one as far as c.b. was
concerned. Their findings showed that shifting c.b. into the v.h.f. or uh.h.f. region could
produce considerabe advantages. It would produce considerable advantages. It would
cause much less interference to home cause much less interference to home-
entertainment equipment, and the substanentertainment equipment, and the substan
tial increase in the channels which could be used would put an end to the present over crowding.
Because special permission is required in West Germany to use frequencies around
900 MHz , this band could not be included in 900 tests. Instead the 23 cm amateur band (1295MHz), which has similar propagation with the $70 \mathrm{~cm}(435 \mathrm{MHz})$ band and the cur ent $11 \mathrm{~m}(27 \mathrm{MHz}$) band. On the 11 m band interference from stations in countries urther south and from industrial generators, while on v.h.f. and u.h.f. only noise could be omnidirectional anternas with no gain and oowers of less than 1 W .
For propagation comparisons the differen chosen as a heavily built-up municipality, the Upper-Bavarian lakes were used for propagation over areas of water, and the hilly
country in the north of Munich enabled trials to be done over undulating terrain. As expected, the poorest ranges were observed the 23 cm band, and usable ranges could exposed location. Penetration was good on his band and radio contact was not even los city, howevever, the "phase wipeouts" from passing vehicles proves a great nuisance, and
phen it was concluded that diversity reception
could help in this case. It was the jound experience that the 23 cm band could only be of value for c.b. radio if repeater stations were set up on high buildings or mountains, approval for high-gain antennas

US noise iammer

simulator to be made

by UK company

A contract, valued at more than $\$ 4$ million, to
build the US Navy a noise jammer simulator, build the U Navy a noise jammer simulator,
has been awarded to Watkins-Johnson the Windsor-based electronics company. The
order, which comes from the Naval Weapons order, which comes
Centre at Dahlgren, Virginia, gives the company the responsibility of designing, manufacturing, installing and activating a
computer-controlled system capable of emulating hostile jamming environments. When completed in 1981, the simulator will be used at the Atlantic Fleet Weapons counter-countermeasures training for Navy radar operators.

More v.h.f. broadcasting likely

The v.h.f. sound broadcasting band in Regio at present 87.5 MHz to 100 MHz , wil MHz as a result of a decision at WARC $79, \mathrm{w}$ understand. In Britain, for example, this wil allow an extension of BBC and IBA local
radio services, will avoid the necessity fo haring between BBC Radio 1 and Radio 2 and will reduce the need for some Radio 3 and Radio 4 programmes to be displaced by
educational broadcasts (see article by D. \mathbf{P}. eggatt in this issue). To permit this exten on of broadcasting, the police radio com nunications at present occupying 100-10 ot yet known what frequencies are likely to used

Apart from this loss, mobile radio in Re gion 1 has benefited overall from the decisons at WARC 79. At the time of going to
press we understand from unofficial source press we understand from unofficial source he spectrum which it has not had the use o before. In Britain one of these sections could
well be part of Band $1(47-68 \mathrm{MHz})$ which is a resent used for 405 -line television broad casting by both the BBC and IBA, but what happens here will in fact be an internal UK

Impulse buying by hi-fi customers

A consulting firm, Venture Development
Corporation, from Massachusetts, claims Corporation, from Massachusetts, claims a customer selecting a hi-fi product and the
amount of money spent by the manu The Corporation says that hi-fi buyers sometimes have a lot in common with new
car buyers in that they need a lot of inforcar buyers in that they need a lot of infor-
mation, they often price shop, and they frequently require substantial psychological support. At other times, it says, the hi-fi
buyers behave like chewing-gum buyers buyers behave like chewing-gum buyers,
needing very little time to make a brand needing very little time to make a brand
selection and being completely pre-sold on a
particular product particular product. Price did not seem to be a
critical factor as long as the merchandise was available.
The consulting firm compared the owners of systems costing $\$ 1400$ or more with
owners of systems costing less than $\$ 800$ and owners of systems costing less than $\$ 800$, and
found that 72.7% of the owners of high-priced systems spent at least a month selecting component brands, but only 37.2 of low-
priced systems owners spent that long Two factors accounted for this, according to the firm. Firstly, the larger the purchase, the more time the people were willing to invest to secondly, the more expensive systems had more features requiring consideration, making the final choice more complicated.
20.7% of the owners of systems worth less the $\$ 800$ decided on their components within one day or less, and only 4.2% of the owners of
high-priced systems were able to high-priced systems were
purchase in the same time.
purchase in the same time.
The Coration claims that the implica-
hint that the remainder of Band 1 could radio broadcasts. It seems there has been something of a
conflict at WARC 79 between the USA and confilct at WARC 79 between the USA a a
Canada over the allocations for services in the u.h.f. bands in Region 2. Because the to the US bopuleded areas of Canada are close ds in the same manner in an integrated way to avoid
interference. Canada wants to use the u.h.f. bands exclusively for television broadcasting (the present exclusive allocation for this
service being $470-890 \mathrm{MHz}$) partly has a large number of language groups to cater for both native peoples and immigrants, while the USA wants a more flexible mobile radio. For example, the land mobile
radio radio community in the USA, the recommended a co-equal mobile and broadcasting allocation
between 470 and 806 MHz between 470 and 806 MHz to provide
flexibility in the international table of alloca-
tions and tions and leave the domestic u.h.f. television allocations intact to the degree that is understand that the Canadian case is getting strong support from other delegations, but
the issue is not yet settled. tion for retailers is clear. They should not
ush the sales of high-priced merchandise.
Product Product literature, specification sheets and
reprints of reviews should be readily available for customers to consider at their leisure, and the higher the price, the more

V.o.r. computer

Walter Freter, who is a member of the Munich gliding club and the Siemens
(Munich) amateur electronics group, has developed an automatic v.h.f. omnirange (v.o.r.) receiver, using a microprocessor to
calculate and display the required compass calculate and display the required compass
bearing. Normally, the pilot of an aircraft is required to look up the frequency of the
selected vor beacon selected v.o.r. beacon, tune his navigation
receiver and set the omni-bearing selector, observing the left/right indications of the
display and display and adjusting the heading to keep the Freter's desig
Freter's design avoids all this by virtue of
its programmed table of all European its programmed table of all European
frequencies, and the power of its microprocessor to tune the navigation receiver to
the beacon transmission. The processor will calculate the required compass course to fly,
using the left /right tinformation which would using the left//right information which would
sormally be displayed, and will show the ormally be displayed, and will show th
continuously up-dated compass course on numerical display on the control panel.
Siemens say that several Siemens say that several manufacturers
not Siemens?) have shown interest in the

.
 WORLD OFAMETIETDD DADIC

Past the peak?

By the time these words are published it seems likely that the peak of Solar Cycle
21 may have passed - although this will not be known for certainty until mid1980. Long-distance paths on frequencies up to and above 50 MHz re-
appeared in mid-October with many cross-band ($50 \mathrm{MHz} / 28 \mathrm{MHz}$) amateur contacts between Europe and North America. The season appears to have opened on October 18 when American
50 MHz signals were received in West Germany. The amateur station, G3SSO, operated by personnel at GCHQ, Cheltenham is thought to have been the first British station to make such a contact this autumn, working
Canadian VE1AVX on October 19 RSGB advises that $28.875-28.895 \mathrm{MHz}$ has become established as the frequencies for cross-band s.s.b. operation with 50 MHz North American stations.
The sunspot peak has been reached
sooner than expected, although if the cycle follows the usual pattern, the decline will be considerably slower and several more seasons of 28 MHz (and possibly ${ }^{50 \mathrm{MHz} \text {) long-distance }}$ "openings" appear likely. The past decade has shown once again the great difficulties experienced by radio physicists in accurately predicting, except in the short-term, the dates of maxima and minima and sunspot activity. Perhaps the most interesting new theories to emerge recently are those of Professor R. H. Dicke of Princeton University who believes that the cycles are accurately magneto-fluid oscillator but take varying times for the magnetic fields to reach trhe surface; he also espouses the theory that the true solar cycle last 22 years with a reversal of mag.

Foxhunting

One of the aspects of amateur radio that continue to attract a small but faithful and enthusiastic following is the art of
locating hidden stations by the use of direction-finding receivers. For many years the RSGB has organized a series of "qualifying events" leading to a
"national final" based on transmissions "national fina" based on transmissions qualifying events, competitors are expected to locate two different hidden transmitters within about a ten-mile radius of the starting point, but for the
national final it is a question of finding national final it is a question of finding
three stations in a matter of a few hours. The 1979 winner, Eric Mollart of the Mid-Thames Club, took only just over
two hours to do this, in spite of the many ingenious difficulties that tend to get built into the course as a result of past experience. For example, a techni-
que which has been used at several events is to have an extremely long aerial which even when located may apparently léad nowhere. At Wolverhampton, in one of the 1979
qualifying events, for instance, one qualifying events, for instance, one
transmitter had several hundred yards of fine wire suspended in the trees as aerial, but with a final length tacked under the horizontal rails of a fence, eventually leading to gorse bushes in were concealed. The d / f bearings thus were the competitors only to a wooden fence with no sign of the concealed station.
A rather different form of 'foxhunting' using the 144 MHz band, is also organized, for example, by (London), though one gains the impression that care is taken to ensure that it can be combined with the objec
tives of the Campaign for Real Ale!

The first G/YL

Miss Barbara Dunn, G6YL, who died recently, is generally believed to have been the first licensed 'YL' (young lady)
amateur operator in the UK and held amateur operator in the UK and held
her licence for over 50 years. Through her licence for over as one of the smal group of British 'YL' operators who were tremendously active on the long
distance bands and in pioneering both distance bands and in pioneering both
28 MHz and the old 56 MHz bands. Even in 1937, ten years after she took out her licence, there were only five 'YL' a mateurs in the UK: Nell Corry, G2YL; Con stance Hall, G8LY (still licensed); A. J.
Burns, GM2IA; G6SF; and Barbara Durns, GM2IA; G6SF, though these were joined soon afterwards by Catherine Myler, G3GH who later was one of the very few amat eurs to receive official recognition for their work as Voluntary Ine
Barbara Dunn became interested in radio communication as early as 1923 when she heard spark signals from ships breaking through on top of the old herself $20 \mathrm{w} . \mathrm{p} . \mathrm{m}$. Morse by listening on a crystal set to the FL (Eiffel Tower) time signals on 2600 metres and ships on 600 metres before becoming interested in short waves at the end of 1925
acquiring her licence in 1927 and using initially an LS5 power oscillator with a rotary converter powered from 6 V accumulators. Next year, moving from
was still limited (like many other ama eurs of the time) to using 100 V d.c. mains but worked all over the world t.p.t.g. oscillators and, using a bent $60-\mathrm{ft}$ 'AOG' (Act of God) aerial; with her rotary converter mounted on a block of sorbo rubber under the table. Her made contact with many of those equipped with h.f. radio, although at that time British ships were not permitted to operate in this way.

The amateur radio

market

Throughout the 1970s, the amateur radio equipment market has been increasingly dominated by Japanese fy the
whose products are now used by majority of amateurs in most parts of the world (including many of the Eastern European countries although not in the USSR where much of the equip"home made"). Although during the decade the total amateur market for equipment has risen sharply, few of the old-established British or American firms have come through unscathed
from the torrent of equipment from Yaesu, Trio (Kenwood), Icom (Inoue), FDK etc. Some firms have adopted the policy of continuing to manufacture established designs but without introducing new equipments involving
heavy development costs; others have heavy development costs; others have
attempted to keep ahead of the Japanese designs, although this is proving an increasingly difficult and hazardous policy and there are uncon-
firmed rumours that one of the more innovative American firms may soon be a further casuality of the trade war.

In brief

The USSR is planning to launch an RS3 amateur radio satellite during spring or summer 1980 King Hussein of Jordan (JY1 and G5ATM) recently met 45 members of the Radio Society of Harrow at a reception given by the
Mayor Richard Thurlow, G3WW has become the third amateur in the world to obtain a CQDX award for working 100 different countries on slow-scan television (No. 1 wa W8YEH, No. 2 G3IAD) Japan is now issuing amateuir callsigns in the
JM prefix series ... The VHF Commit tee of the RSGB has recommended 145.650 MHz as a "calling frequency" for amplitude-modulated transmissions.
PAT HAWKER G3VA

WIRELESS WORLD, JANUARY 1980

NOBODY CAN DO IT LIKE SABTRONICS CAN. NOBODY! price of only
read further.
QUALITY, PERFORMANCE AND ACCURACY Typical DCV accuracy of $0.1 \% \pm 1$ digit. jacks are recessed to ad to operational safety AND FLEXIBILITY

Making Performance Affordable

We pioneered the first benchtop professional quality Digital Multimeter at lowest price anywhere. We sold tens of thousands of units around the world and are still selling.
Nobody has been able to beat our price/performance ratio.
Now we are making the impossible again. A $31 / 2$ Digit LCD handheld professional quality multimeter at an absolute low
price of only $£ 59.95^{*}$. But don't get sold yet, wait till you have

The model 2035A offers you long term accuracy with a laser The model 2035A offers you long term accuracy with a later
trimmed resistor network, a stable bandgap reference element, and single chip LSI circuitr. Expert circuit design and board layout have reduced component count to the optimum minimum. With 32 ranges** and 6 functions, you
can measure $A C$ or $D C$ volts from $100 \mu \mathrm{~V}$ to 1000 V ; AC and DC carrent from $0.1 \mu A$ to $2 A$; resistance from 0.1Ω it $20 \mathrm{M} \Omega$.

OVERLOAD PROTECTION FOR GREATER SAFETY Input overload is protected to 1000 V (DC + AC peak). Ohm and current ranges are fuse protected. These features, plus a
high immunity to voltage transients, protect the 2035A against uncertain input conditions. Input and battery eliminator

OTHER FEATURES FOR GREATER CONVENIENCE
Automatic zero; Automatic polarity (+ implied, - shown); Large $1 / 2 \mathrm{LCD}^{\text {readout with automatic decimal and low battery }}$ indicator; uses inexpensive 9 V transistor battery; 200 hours
battery life: push button swith weight (only 11 oz); fits easily into a jacket pocket; specially designed injection moulded rugged plastic case in beautiful grey beach colour with matching switch buttons; only 2 caliberation controls. Whether you are professional o
amateur, you should check out the Model 2035A for yourself.

Model 2035A as shown.
Model 2037A with temperature measuring circuitry $£ 69.95$. ** Model 2037A has 34 ranges and 7 functions.

Case colour
Case Material

Case colour
Cass Moterial
Optional

\qquad
sabtronics 0
INTERNATIONAL INC \qquad
Send your orders with payment to:
TIMWOOD LTD
14 Albert Street, Cowes Isle of Wight, England:
Telex 86892
Please send me by parcel post:
_ Model 2035A
assembled and tested at $£ 59.95$
_ Model 2037A
assembled and tested at $£ 69.95$
Model THP 20
Touch and Hold probe at $£ 9.95$
Plus VAT at 15% and p.p. $£ 3.50$ each $£$
Total enclosed herewith:
Name:
Address:
City:
\qquad
\square
\square
\square
\square
\qquad -

Model TCSU1
Accurate pin point temperature control
between 65° and $400^{\circ} \mathrm{C}$. Heating element and sensor built in tipo of the iron for fast
response. Interchangeable slide-on bits from
$4.7 \mathrm{~mm}\left(3 / 16^{\prime \prime}\right)$ down to 0.5 mm . Zero voltage switching, no
spikes. No magnetic field, no leakage. Supplied with spikes. No magnetic field, no leakage. Supplied with
miniature CTC ($35-40$ watt) iron or X TC 150 watl TCS miniature CTC ($35-40$ watt) iron or $\times T C$ (50 watt). TCSU1 solderi
station with XTC or CTC iron $£ 36$ (6.44). Nett to industry.

Model SK3 Kit

* VAT + P\&P as shown in brackets C ?

Practical parallel-tracking pickup arm - 2

Optoelectronic servo control gives low-inertia, fail-safe operation
by Rod Cooper

Despite the many advantages of the parallel-tracking record deck, the high cost of owning one deters all but the well-heeled few. This prompted the design and construction of a pick-up simplicity of construction specifically in mind. By avoiding complex
engineering it is possible to construct the design with non-specialized tools the cost of a commercial item.

WHILST ACCESS to a lathe makes
WHILST ACCESS to a lathe make construction quicker and easier, it is tools normally found in a small workshop. An electric drill and stand, some BA taps and dies and a selection of
metal cutting files and saws are howmetal cutting fis
Both the tracking arm and reference arms are made of thin-wall Duralumin tube, readily available from aeromodel shops. One end of the tracking arm is
plugged with a tight fitting brass rod and glued into place with Araldite. This serves to strengthen the fragile tube where the vertical pivot goes through, and provides some degree of counterb alance.
Constructors will notice that the
positions of horizontal and vertical pivots have been transposed, compared with the conventional arrangement. Having the vertical pivot on the track ing arm is not good practice on a consible here because the tracking arm on a parallel-tracking machine does not swing on the pivot more than half a
degree, whereas the conventional must swing through a wide angle. The chang nables an unusual design of horizontal racking arm assembly to be easily taken off for transport or adjustment without having to dismantle anything, and allows replacement without having to re-align it with the reference arm.
There are other advantages to this de There are other advantages namely: it is much easier to make han the usual spindle type, it is virtually friction-free, needs no lubrication as no play due to bearing clearance and does not introduce play due to
Avoiding play is important becaus the control system cannot distinguish between play and racking error. It is for his reason too that the sliding platform is spring loaded, so that any running gram 3 shows the horizontal pivot degn. Two adjustable screwed pivo points rest on top of two support pillars, ne in a slot and the other in a conical ing. The arrangement is quite stable provided the two pivots are far enough apart.
The vertical pivot is straightforward Adjustment for inclination is by mean earing, and which can be moved round on the flat top of the gimbal ring o the correct position.
The track in Fig. 4 can be cut with a mall hacksaw and then filed to th some time ensuring the track is straight as the whole concept depends on the eference arm maintaining a constant
angle to the tracked radius of the
record. Also, it is essential that the carriage slides without any hard spots It is not necessary to produce a perfect taken up by the spring-loading.
To reduce wear, a few drops of clock oil (which has good non-gumming pro perties) can be applied to the vertica surfaces parallel track. Don't use mineral oil sold as general-purpose or light machine oil because it thickens to a gum after a while.
The hinge pivot holder part 14 is soldered in position to the lower plate,
part 11. The best way of doing this is to pre-solder both plate and holder; with length of 6BA rod through both holders position them the correct distance apar and place them on the plate, and gently quite easy to move the two holders into the exact position while the solder is molten; excess solder will cause holder to float out of place, so use the bar $\underset{\text { For the }}{\text { minimum. }}$

For the sake of simplicity, the coun terweight on the prototype was made from a piece of lin diameter brass ba drilled through the centre and decoup led with a foam rubber insert. However the comments by Randhawa on coun
terweights (WW April 1978 pages $63-8$ should be noted by constructors as a better design is probably possible. The main requirement for the counter weight is that it should give neutral equilibrium with the chosen cartridge
when the tracking arm is positioned about half way up the vertical pivot. The photocell holder was filed from piece of solid engineering-grade p.v.c. Tufnol would probably be suitable. The holder with Araldite. An aluminium shim separated the diodes, this being necessary to prevent light from one
diode reaching the other by reflections via the transparent sides of the BPW34. The size of the shim is not critical but for good light cut-off between the diodes it should project $1 / 8 \mathrm{sin}$ or so all round.
A shroud was made from the same is best if this is eventually fixed in place with Araldite when the system has been proved to work satisfactorily. Beer and strong, thin aluminium. It is important that the weight of the holder and shroud is kept as low as possible to preserve the low inertia of the tracking arm.
Regarding the finish and appearance
of the self-made metal parts, both polof the self-made metal parts, both pol-
ished brass and aluminium can be protected from tarnish by Letraset aerosol spray No. 101. This provides quite a tough, abrasion-resistant transparent film which is almost undetectable.

Fig. 4. Lower assembly comprised lead screw arrangements as shown, together with drive mechanism pictured in December issue.

WRELESS WORLD, JANUARY 1980

WIRELESS WORLD, JANUARY 1980
Wiring to the cartridge, opto-switch and filament bulb is made with 3×45 swg Litz wire. There seems to be no readily
available alternative to Litz wire which is flexible enough for the job. The cartridge and opto-switch wiring is carried inside the tubular tracking arm, exits ear the vertical pivot and in form. From here the cartridge wiring is kept apart and carried in p.v.c. sleeving to a 16 pin dual in-line plug and socket on the plinth. The opto-switch wiring is combined with the wiring from the bulb the socket. This arrangement gives a neat and symmetrical layout and helps prevent the lead-out wires from fouling he gimbals.
The $\mathrm{Tl}^{1} / 4$ filament bulb is rated at 24 V 35 mA and is run directly from the 20 V supply. When under-run like this it has
a very long life but does not emit much white light. This hardly matters, as the response of the BPW34 diode lies mainly in the infra-red and matches the bulb's diode could propably' be used instead. The efficiency of the reference arm tube can be improved by polishing the inside surface - bright aluminium has a hig reflectivity in the infra-red register.
The T11/4 bulb is the only common available bulb which will insert into the standard ${ }^{1 / 4 i n}$ diameter tube. It should not be free to move when in place, and wrapping a small piece of adhesive tape ound the plastic body of the burb the filament is vertical.
The cassette motor used in the prototype drew 60 mA on normal play, rising only a few milliamps when running on full rated voltage, but drawing 500 mA when stalled. The output transistors
need to be mounted on heat dissipators to avoid overheating when the motor is stalled; though stalling should never take place in theory; it is not unlikley during testing and setting up. Similarly, the short-circuit protection resistor in generously rated.
The relay used was a sensitive reedswitch type with a coil wound specif cally for this circuit, but a stand ard $12 V$ relay could be used in con The $47 \mathrm{k} \Omega$ adjustment potentionmeter hould be set so that in normal ambient light conditions and with the light slit off the face of the photodiodes, the relay will close. High ambient light conditions may swamp the diodes despite the
shroud, and prevent the relay from closing. However this is never likely to occur if the unit is used sensibly, for example away from bright sunlight. A heavily-tinted or even light-tight cover on the record player is recommended. The power supply for the turntable,
servo motor and electronics is a 20 V stabilized unit capable of giving 1A (my turntable required 350 mA peak). As the design of the power supply is by no

Identification

ead screw bearing 2

 ead screw 24side pivot holder liower pivot 4 hinge pivot 15 and vertica upper pivot bearing 6 support pillars 7 \& 8 parallel track 17
upper \& lower plates 11 \& upper \& o ower plates 11 \&
end plate 20, hinge pivot holder 14 , hinge bar 13 slider 19 , cue lever base 18 cam 21
slider 19 lead screw coupling 22
reference arm holder 16 reference arm holder 16
tracking arm 9 tracking arm 9
reference arm
plug for tracking arm 9
side pivot pins 3
side pivot pins 3
cue lever shaft
cue lever shaft
cue lever 25
cue lever 25
cue lever 25
counterweight
gimbal ring 1
template, Fig. 6, \&
microswitch plate, Fig. 4.
slit \& photocell holder

Aluminium shim, as àppropriate

Other essentials 1 mA meter moven

6 V d.c. reversibible electric motor, cassette deck type
Relay - see text
Two small lever-ty
Two small lever-type microswitches
TV/42 24 V 35 mA light
Chassis-mounting 16 dual in-line socke
Wire-terminating type 16 dual in-line plug for above
4 metres litz wire-
Four pulley wheels to suit motor, lead screw, gears
Matched worm gears and shafts
Matched pa
Watch oil
Raw materials and parts marked with asterisk are available from J. Biles. Send s.a.e. for list to 120 Castle Lane, Solihull West Midlands B92 8RN Suitable turntable and motor are available from Symo Ltd, 22 Reading Road, Henley-On-Thames, Oxon RG9 1 AG

Suggested simplifications for reference arm hinge include avoiding cuts in top plate making lower plate larger. Gimbal pivot pillars, shown rectangular on page 67, are more simply made from $1 / 4$ in rod.

WIRELESS WORLD, JANUARY 1980 obtained with the opto-switch disconnected. If it is not then either the to correct this (and then re-aligned of course) or the opto-switch must be moved in relation to the tracking arm. As a final check, observe the tracking
arm from above as it plays a record properly, and note the changes in meter reading as the servo-system corrects tracking errors. Now is the time to adjust the sensitivity by means of R_{f} and the maximum voltage to the motor (if limiting Zener diode for a higher or lower value as required. The prototype was set to correct an error of 0.2 degrees in about 0.5 seconds, which I found to be adequate. The time taken depends not
only on the sensitivity but on how hard one is prepared to drive the servo motor. The amount of noise and vibration generated is naturally small in motors designed for cassette decks, but in the prototype, which used a 6 V motor, 5.5 V
was the optimum voltage, before noise from this motor overtook noise from the turntable motor.

S. G. Brown, F.R.S.

 At the time of his death shortly after the end At the time of his death shortly arter the endof the second world war Sidney George Brown F.R.S. had more than 1000 patents for inventions. These included the gyrocompass
used by the Admiralty during the first world used by the Admiralty during the first world
war, when they wanted to avoid adopting the American Sperry equipment; the tuned-reed
headphones, which were so sensitive to weak headphones, which were so sensitive to weak
signals that they were a standard issue for wireless operators; and a loudspeaker. Brown was the son of a family which had already
won ame ame in the USA for proposing methods won fame in the USA for proposing methods
of preventing a repetition of the fire which of preventing a repetition of the fire which
destroyed much of Chicago in the eighteenth ${ }^{c}$ century.
Mr F. P. Thomson, biographer of A. D. Blumlein, is now preparing a biography of
Brown. He would like to hear from people who knew the Brown family in the USA or worked for S. G. Brown or his company in
Britain and who could give or lend papers notes, photographs, etc. Mr Thomson's address is 39 Church Road, Watford, Herts

Editorial writer for

Wireless World

Wireless World needs a new perso on its editorial staff. Technical
experience in electronics and /or communications and an ability to write are essential. The work is varied and includes writing technical news reports and other material, attending meetings, exhibitions,
press conferences and other events, some abroad, and editing contributed technical articles. A good deal of freedom will be given to a person who shows ability and 25 to 35. Write to: The Editor Wireless World, Dorset House, Stamford Street, London SE1 9LU.

Wireless world, January 1980

C.m.o.s. compatible piezo sounder

Piezo electric sounders are efficient and reliable devices which contain a ceramic transducer and a switching tran-
sistor. Although the average curren drain is 50 mA , the sounder functions as a class C blocking oscillator where the It is difficult to with a peak of 800 mA . directly with c.m.o.s. or t.t.l. and a switching transistor would need a wasteful 50 mA or so of base current to transistors need no drive current they
re relatively expensive and have significant saturation voltage. The
implest solution is a small thyristor which requires a maximum gate current of only 0.2 mA . Because the anode
current falls to zero between each pulse, current faiss to zerl between each pulse, current is present. No gate to cathod resistor is required because a logic low output clamps the gate off.
C. Stephens
Woodbridge

Suffolk

Variable current-limiting

supply

This simple power supply offers variable current limiting from 10 mA to 3 A by using the pass transistor to offset the $V_{\text {be }}$ of the protection transistor. Resistor
R_{1} can have any reasonable value and R_{1} can have any reasonable value and omitting R_{2} allows unlimited maximum
current. In the alternative circuit, R_{3} and D_{1} must be chosen for the maximum current required.
D. Rawson-Harris

Stockport
Cheshire

With the tracking arm fully assembled with cartridge and counterweight, raise or lower the vertical pivot to produce neutral equilibrium. The horizontal
pivots can also be adjusted to help produce equilibrium, and then set in pound. With the cartridge resting on a discarded record, the level of the optoswitch is now adjusted to be in line with the light beam, by means of the spacing washer (Fig. 1, part 1). which may have
to be filed down or added to in order to achieve this.
A template to check the accuracy of tracking is essential. A sheet of thin
corners being checked against an engineer's set-square. Find distance d, which will depend on cartridge position, the front edge of the parallel track Scribe a radius line at distance d parallel to the front edge of the template, left to right, and then using the set-square scribe several lines for reference purposes at right angles to this radius
Adjust the reference arm by means of the screws securing it to the upper platform so that it is parallel to one of the reference lines on the template. Track the arm fast forward and check to the various other reference lines. If there is a discrepancy, the parallel track is not straight, and should be re-filed; fortunately the eye has very good perception of parallelism. When this is disconnected, play a record, setting the voltage to the servo motor so that the tracking arm keeps pace with the record, very approximately. Note this voltage.
Now
Now connect the opto-switch and with the record stationary and the lead screw, bring the tracking arm reading should now correspond to that

CTIDCUTTR IDEAS

Now, the complete MK 14 micro-computer system from Science of Cambridge

VDU MODULE. £33.75
($£ 26.85$ without character generator) inc. p \& p.
Display up to $1 / 2 \mathrm{~K}$ memory $(32$ lines $\times 16$
chars, with character generator; or 4096
chars, with character generatar: or 4096
spot positions in graphics mode) on UHF
spot positions in graphics mode on UHF
domestic TV. Eurocrd-sized odule includes
UHF modulator, UHF modulator, runs on single 5 V supply.
Compel
nixet ascoi upper.-case character set can be Complete ascii upper
mixed with graphics:

CASSETTE INTE
\&7.25, inc. $\mathrm{p} \& \mathrm{p}$.
Store and retrieve programs on any cassetto
recorder. Use for serial transmis sion down single line a up to 110 baud (teletype speed e.g. over telephone line, and to communicat
between two or more MK 14 s .

PROM PROGRAMMER \&11.85 inc. $\mathrm{p} \& \mathrm{p}$.
Use to transfer your own program developed
and debugged on the MK 14 RAM to PROM
 special applications, e.g. model railway
control. Software allows editing and verifying

MK 14 MICROCO
\& 4655 inc p\&
Whidely-reviewed
Widely-reviewed. microcomputer kit with
hexadecimal keyboard, display, 8×512-by
PROM, 256 -byte RAM, and optional
16 -lines $/ / O$ plus futh ar
Supplied with free manual to cover
operations of all types - from games to
basic maths to electronics desigm
basic cmaths
contains programs plus instructions for
creating valuable personal programs. Also
a superb education and training aid - an
a superb education and training aid - an
ideal introduction to computer technology
Science of
Cambridge Ltd

FROM HERE...

TO HERE...

NEED NO LONGER TAKE AN ETERNITY OR COST A FORIUNE

Time is money and with conventional custom designs, the process from the detailed logic design through to layou of the chip can take 6 to 9 m

The following stages of mask
aking, prototypes, and test programmes still have to take place. In this age of rapidly changing technology, two years to production is an eternity in both commercial and economical sense This is why GEC Semiconductors have developed the Cellmos system, which special LSI designs with a much lowe
starting fee and in a much shorter time. Once we have approved logic diagrams, our computer will proces the design through a series of programmes, which will layout the circuit
onto the chip. The whole sequence will not take more than a few hours of computer and engineering time. Th turn round time from the approved logic to samples is within 12 weeks. ardly an eternity.
If you feel the Cellmos system can help with your problem, please write or
phone our sales office for further details or even a demonstration

HURRAH FOR TELETEXT
May I, as a television dealer, air my views May 1, as a television dealer, air my views
concerning teletext, which seems to have dominated Letters to the Editor in recent
issues? issues?
I feel I feel the first point I must make concerns
the letter from Mr Williams in the Octobe the letter from Mr Williams in the October
1979 issue. He complains on the one hand that there are not enough pages, and then goes on to add that if there were, he would
not have time to read them all. Spelling and punctuation errors, he says, occur frequently as in some newspapers.
Regarding access time, it takes on average 12 seconds for a page to appear, a little longe on racle - not bad for a syrowed lines.
ride pigyback on a few borr Teletext is not fading away as some people would have you believe. We dealers must take a lot of the blame for its slow start. My
teletext customers are extremely pleased teletext customers are extreme the pleased
with their sets, which could be due to the fac with their sets, which could be due onstract
that we spend over an hour demonstrating the full teletext facilities to them I keep wondering why some people wish to
change the format of teletext. As far as I am Change the format of teletext. As far as I am concerned, it offers a very good and com-
prehensive service the way it is. Teletext sales are on the increase and I feel there is a healthy market developing for the future. So hands off our teletext service, it is the bes R. J. Timms

Swadlincote
Swadincote
Burton-on-Trent

SIDEBANDS AS
PHASORS
The opening remarks of J. M. Osborne's excellent arcle suept that Bessel functions are necessary to show that the sidebands of a frequency modulated wave exten to infinity. This is not strictly true for the The same result can be achieved usin mainly traditional trigonometrical methods. A general expression for a frequency
modulated wave (see Terman's "Electronic and Radio Engineering", page 588) is:
$e=A \sin \left(\omega_{c} t+m_{\mathrm{c}} \sin \omega_{\mathrm{m}} t\right)$
where ω_{c} and ω_{m} are $2 \pi \times$ the carrier and $2 \pi \times$ the modulation frequency respectively an $m_{\text {, }}$ is the modulation using the well known "sine-sum" formula to
$e=A\left[\sin \omega_{c} t \cos \left(m_{,} \sin \omega_{m} t\right)\right.$
$\left.+\cos \omega_{\mathrm{c}} \operatorname{tin}\left(m_{r} \sin \omega_{m} t\right)\right]$
Thus the problem now turns on finding and $\sin (m \sin \omega t)$ and here we must depart into the realms of simple differentiation. Sin x and cosine x can each be expanded in serie form (see, for example, Saxelby "A course in
Practical Mathematics", page 221) so that:
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}$.
and $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6}$
Substituting $m_{f} \sin \omega_{m} t$ for x in these two series we arrive at two other series, one with
odd powers of $\sin \omega_{m} t$, and the other with a zero frequency component and even powers coefficients in The individu
urther expanded into of each series can be monic components of ω_{r}. The even ind harwill produce cosine terms of even harmonics and the odd indices harmonic sine terms, the highest harmonic in a particular term being equal to the orde
exampl
$\sin ^{3} \omega_{m} t=1 /\left(3 \sin \omega_{m} t-\sin 3 \omega_{m} t\right)$
and $\sin ^{4} \omega_{m} t=1_{8}\left(3-4 \cos 2 \omega_{m} t+\cos 4 \omega_{m} t\right)$ It is now necessary to collect together
terms of similar frequencies and to consolidate their coefficients. We have to subexpansion where the cosine terms will be multiplied by sin $\omega_{c} t$ and the sine terms by $\cos \omega_{c} t$. We are now on familiar ground where each term will resemble that of
$\left(\cos \omega_{c} t\right) \cdot \sin p \omega_{m} t$ and $\left(\sin \omega_{c} t\right) \cdot \cos n \omega_{m} t$ where p is an odd integer and n is an eve one. The expansion of these two expression results in:
$1 /\left[\sin \left(\omega_{c}+p \omega_{m}\right) t-\sin \left(\omega_{c}-p \omega_{m} t\right]\right.$
and $1_{2}\left[\sin \left(\omega_{c}+n \omega_{m}\right) t+\sin \left(\omega_{c}-n \omega_{m}\right) t\right]$ espectively. These are, of course, the infinite sidebands
of the frequency modulated wave. The car rier term will result from the zero frequency component arising from the expansion of the even it will have an amplitude depending on complex function of m_{r}.
The method is laborious and it does no ave the elegance of the more accepted who have not progressed far with thei mathematics - if they have the time and tions. There may also be advantages when he modulating wave is not a simple sine o cosine function as, for instance, in frequenc at the intricacy of the ensuing manipulations. A similar expansion can also be used fo owing S. F. Brown

Post Office Telecommunication ugby Radio Station

CORRECTIONS

the second part of J. M. Osborne's article everal errors occurred on page 68 in Appendices 1 and 2 . for which we apologize o readers. In Appendix 1 the expression in the sec
(seventh line) should

$$
a \sin \left(2 \pi F_{0} t+\theta \sin 2 \pi f t\right)
$$

In Appendix 2 the first expression (for f.m. of carrier) should read:

$$
a \sin \left(\Omega t+\frac{\Delta F}{f} \sin \omega t\right)
$$

and the second expression (seventh line)

$$
a \sin \left(2 \pi F_{0} t+\frac{\Delta F}{f} \sin 2 \pi f t\right)
$$

Also in Appendix 2 the expression in the middle column of p. 68 for the maximum rate of swing in terms of frequency (11 lines from top of column) should read:
$2 \pi \Delta F=\theta 2 \pi f$
Editor.

WHAT IS AN ELECTRON? Neither Dr Theocharis nor Professor Jennison appes (Letters, October). This is to discover and systematise useful descriptions of the natural universe as we observe it in experimathematical and some of them are carefully bounded. Professor Jennison has proposed a model and is usful Particle-waveduality must be one of the classic paradoxes and it remains unresolved. Dr Theocharis thinks that most physicists actually believe in a real Jekyn and
Hyde electron. Professor Jennison actually appears to do so-and that is his prerogative. Most modern scientists will be happy to leave these two to fight in our. ness of mathematical descriptions but that does not itself invalidate those descriptions.
One must simply tread carefully in making use of them.
D. A. Ross
Poynton

CITIZENS' BAND AND

THE LAW

 In November a correspondent criticised youfor "supporting" the illegal use of c.b. radio and his criticism was based on the belief that caw-breaking is automatically wrong in any wrong? Let us hear some eminent views.
J.J. Rousseau, 1762: "The inflexibility of the laws, which prevents them from bending to circumstances, may in certain cases make them injurious, and bring
crisis the ruin of the state."
crisist her eun of the state.
Eminud Burke MP: "It is not what a lawyer
. tells mund mary yo Mp. "ut what humanity
and justice tell mel I ought to do."
and justice tell me I ought to do."
J. S. Mill, 1861: "There is no ethical creed which does not etemer the rigidity of of ts laws
by giving a certain latitude. for and by iving a certain latitude \ldots. for accom-
modation to peculiarities of circumstances modation to peculiarities of circumstances
there sems bo be univerasyly additted that
there may be unjust laws, and that law.

Consequently, is not the ultimate criterion of "stichere are "Ther "There are different degrees of obedience nditis nis noterery degree that is commend- ble. Only an unmitigated despotism deble bend only an un unititee thated despotism dend- nands that an individual citizen shall obey mands that an individual citizen shall obey unchditionally every mandate of persons in authority. anconcition. authortrand Bertrand Russell: "Individuals who opposed received opinions have been the source of all progress..... Without rebellion Source of all progress...... Without rebellion ankind would stagnate and iniustice would mankind would st, be irremediable."

C.B. is not illegal because it's wrong but
only because the constitution has virtually ground to a halt under the strain of moder
life. Within government it is mainly unelected bureaucrats who are against c.b. and neither the Home Secretary nor the losely because of more pressing matters So the bureaucrats ruessing matters.
Sy default. I respect of this and most other matters we are
ruled by what J. S. Mill called "the ruled by what J. S. Mill called "the obstruc
tive spirit of trained mediocrity". This is no democracy; it is not even elective dictator hip; it is pure tea-cup tyranny; and in yranny it is morally right to break the law
because of the absence of democratic procedures for changing the law.
Mr Pearson says that he is opposed to
modification of law by blatant disregard for modification of law by blatant disregard fo
it, but he fails to understand that the only reason the law is being modified in this way is
because there is in practice because there is, in practice, no other way.
C.B. is only one of many issues which are clamouring for the attention of an overburdened parliament. (For an example of an other issue see the remarks of Dr Budworth
News. August 1979, p. 41.) The threat to the ews. August 1979, p. 41.) The threat to th
ule of law does not come from Wireles World but from the lack of parliamentary time to deal with these matters. This problem
does not exist in federal countries like oes not exist in federal countries like Aust-
ralia and Switzerland;it need not exist here. The more support that respected journals give to the fight against the tyranny of
centralism the sooner that tyranny will ended and the sooner respect for the law will be restored.
Carry on
Carry on Wireless World
Frost
Dunsyre Lanarkshire

COMMENT IS POLITICAL have read Wireless World for more than 25
ears and paid for it out of my own pocket as nlike many readers, I do not have the subscription paid by my company. During
this period it has served me well and I shall be forever grateful for the technical help and guidance it has provided me with. There have also been delightful moments of humour
which have helped to demonstrate that technical people can be human.
However, recently I have noticed a ten-
dency to knock the establishment ever flavour it might be. I consider the inclusion of political rhetoric out of place in a journal of the calibre of Wireless World: your
November editorial was particularly distast ful to me. I take Wireless World for many reasons but they do not include being sub-
jected to the political bias of the editorial staff, both in editorials and general content. Please, Mr Editor, can we return to an
apolitical journal - crusades I can accept but political bias no
J. Greenwood
J. Green
Chemsfo
Essex

DIGITAL FILTERS

It is with great interest that I have been
following the Wireless World articles digital filters ever since the original articles on Rees ${ }^{1}$. Having programmed the RC low-pas filter on my H-P calculator, I would like to draw attention to a problem that seems to of these algorithms.
As the algorithm is basically derived from he impulse response via the Laplace trans-
form method, the user is tempted to test it by pplying a unit step, and feel satisfied when he desired exponential response is obtained However, the filter cannot operate mean
inguilly on any frequency above the Nyquist frequency, while any impulsive type of test
signal contains frequency, while any impulsive type of test
signal contains a large proportion of its nergy in its high frequencies. Thus the only no harmonics beyond a certain frequency. When a sine wave was used to test the RC
filter it was found to amount corresponding to half of one time increment. The amplitude error was 0.16% when there were 10 samples per cycle and the period was equal to RC. To correct the time
error a. sliding mean was applied. Each sample was meaned with the previous sample before being used (see Fig. 1). The
sliding mean can be considered as 2n.ther siliter witan can be considered as another
fiter with a rectangular impulse response whose first frequency null falls upon the
sampling frequency (see sampling frequency (see Fig. 2). The equi-
valent geometrical procedure is to interpovalent geometrical procedure is to interpo-
late the samples as shown in Fig 1. Even so the procedure is not entirely satisfactory as odd multiples of the Nyquist frequency are
only attenuated, not removed. The interpo only attenuated, not removed. The interpo-
lated sine wave had negligible phase error
but the amplitude error had increased but the amplitude error had increased to
3.5%. The process is equivalent to using an
almost ideal filter on the interpolated

PROGRAMMABLE NOTES

 FOR MUSICAL
NSTRUMENTS

Your correspondent M. Robins (Nov ember letters) does not seem to be aware
that the scale of tuning proposed in his etter was in fact discarded ago. Until this time 'just' temper years ays, thas the standard, but, as M. Robin says, the problem is that a piece of music
sounds very different fount keys was a great promoter of 'equal' tempera ment tuning and composed his 48 Preludes and Fugues as proof that all keys could b these pieces "The Well-tempered Clavier" ncidentally, even in 'equal' temperament
tuning certain keys sound 'brighter' that tuning certain keys sound 'brighter' than
others. TTis is a well known fact amongst musicians who would also consider going
back to 'just' temperament verv much a back to ' just'
retrograde step.
Richard Waters
Leighton Buzzar
Fig. 1. Replacement of $v(t)$ with

Fig. 2. (a) Spectrum of sampled sine-wave
frequency slidng-mean pre-processor
aveform and then sampling the output at ophisticated pre-processor such a mor xample a filter with a Gaussian impulse response would reduce errors due to residual In conclu
aliasing of the input signal is to be avoided if at all possible. Thus, at least for instrumental stitute for an analogue anti-aliasing filter to be applied before any digital processing: For synthetic test data, some digital preprocessing is needed to reduce unwanted
harmonics. It seems that digital filters are not necessarily as simple as has been implied in
your articles. your articles.
W. Gray
Farmborough

References

1. V. J. Rees, "Digital filter design", W.W.
Oct
. 1976 and 2. P. A. L. Ham, "Simple digital filters,", W.W 2. P.A.A.L.
July 1979 .

POYNTING VECTOR

Apparently many people find the concept of
displacement current useful and some find distasteful. Not being a member of either sroup I would normally be prepared to con-
inue as a passive spectator of the fascinatin correspondence which has been stimulated by the recent articles on the subject; after all,
no-one is suggesting that $\partial D / \partial t$ should be struck out from Maxwell's equations, and presumably no-one is insisting that everyone
must believe that there is any physical reality must believe that there is any physical reality
in a current which is said to flow in empty space where there is nothing to carry it (and
nothing to be displaced) I I it to others to point out that in Fig. 4 of "The
history of displacement current" in your March issue the current i will vary con-
tinuously between B and B^{\prime}, as is the way
with transmission lines, so if you want a
continuous "current" you do need a discontinuous "current" you do need a dis
placement current, not localised at B, bu distributed along the length of the transmis sion line.
Howeve Davidsoner, the excellent Walton have spoclarsts Catt action by their uncharacteristically unques-
tioning use of a concept/mathematical construct which is far less harmless than dis placement current, namely the Poynting vector or "energy current" $\mathbf{E} \times \mathbf{H}$. A single
example will show what I mean. Suppose take a battery and connect it to a lamp by a pair of good thick metal wires. Since the electric field is negligible inside the wires the
Poynting vector is too. In fact the Poynting vector is mainly localised in the space surrounding and particularly between the wires. By examining the Poynting vector one can
validly draw the conclusion that energy flows from the battery to the lamp. One could even, in principle, integrate the Poynting vector over a surface containing the battery
or the lamp, but not both, and calculate correctly the rate at which energy flows from the battery to the lamp, but one would be allowing oneself to be blinded by one's own
mathematics to deduce from the fact that the Poynting vector is partically zero in the wires and is at a maximum between the wires that the energy flows mainly between the wire them.
In case anyone does believe that even in physical energy flow I propose the following experiment. First, interpose a metal screen between the battery and the lamp, insulated from the wires themselves, but fitting as
closely as possible, so as not to leave more than the tiniest space for the Poynting vector to squeeze through. Note the effect (if any)
on the amount of energy which gets to the lamp. Now take away the screen and make a break (just a little one, mind) in one of the wires. Again, note the effect on the amount
of energy (if any) which gets through. A
similar experiment could be carried out on telegraph lines, at some inconvenience to the public. If the Poynting vector really represents a flow of energy, the screen
should have more effect than the break. After all, what do we mean when we say (if we do) that the energy flows between the wires
rather than through them other than that if rather than through them; other than that if
we wish to obstruct the flow of energy we would do better, to a first approximation at least, to insert a barrier where the energy
flows than where it does not flow Perhaps it is time someone did a hatchet job on the Poynting vector along similar lines to that of Catt, Davidson and Walton on
displacement current, with the hoped-for result being that it is cut back to its proper size, not that it is necessarily cut out completely. It may be less entertaining (surely
not if the same team could be persuaded to not if the same team could be persuaded to
take on the job) but the usefulness in actual practice would arguably be greater.
C. M. K. Watts C. M. K. Watts
Wester Electric

Western Electric Company Ltd
Essex

The authors reply:
The last sentence of Mr Watts's first paramechanism for a TEM signal travelling un distorted between two perfect uniform conductors.
We sh
demn, those who come out in the open an
discuss electromagnetic theory eve though their grasp of the fundarentals is
weak. CAM Consultants have found weak. CAM Consultants have found that
those professors and text book writers who those professors and text book writers who
are hiding from the present dialogue, are hing from the present dialogue,
athofessional duty would direct
them otherwise a them otherwise, are more ignorant than Mr Watts and the other brave men who are
rushing in to the vacuum. CAM Consultants challenge professors of physics and electronics to come out of the undergrowth and start earning their salaries by discussing
fundamentals of electromagnetic theory, Returning to para. 2, if Mr Watts bares his
chest to the sun, does he believe thet the chest to the sun, does he believe that the
electromagnetic energy (light) burning his electromagnetic energy (light) burning his
skin is travelling from the sun to him down conducting wires, or through a dielectric?
Paragn Paragraph 3 is very instructive. (Why must
he leave the "tiniest space"? Why leave a space at all if the conductor is what it is all about?) Our book Electromagnetic Theory Vol. 2 discusses such situations thoroughly,
on pages 245 and 319 and elsewhere. Refer ring again to his second sentence, conventional transmission line theory lets us calcu-
late the mechanism by which energy curce rapidly builds up to a high flow rate through a small gap as a result of repeated reflections. The argument somewhat resembles that in the appendix to our article in the December screen hugs the conductors for a long length (say one mile), creating a long section with
very low characteristic impedance, trans mission line reflection theory correctly tells us that energy flow from battery to lamp is delayed. More conventionally, this delay he C being the narrow gap between con ductor and screen for the very long distance. Referring to his sentence 3 ; onge the tiny
break in the conductor (which Heavisid called an obstructor) is made, energy current flows through the break and out into the vast space beyond. This space presents a rapidly
increasing (characteristic) impedance, causing all the outgoing energy current to b ceflected back through the break into the narrow channel through which energy wa previously gliding calmly (at the speed of
light from the battery to the lamp. After the initial disturbance of the steady state cause
by the breaking of the conductor (obstruc by the breaking of the conductor (obstruc
tor), the lines of energy current gradually tor), the lines of energy current gradualli, down to a new pattern where energy (of the same amplitude as before the conductor wa broken) flows out of the battery to the gap the battery, in a "continual dance of energy" which Carter dismissed as absurd but CAM Field in its Engineering Aspects, by G. W. Carter, Longmans 1954, page 321.) lf however the break made in the conductor
extremely narrow (and long), it will take time for its existence to become apparent. Very traditionally, this very narrow, long gap in
the conductor would be regarded as a he conductor would be regarded as capacitor. We eshould regard it as a transmis-
sion line of very low characteristic impedsion lin
ance.
Dealin
vein Dealing with his third para. in a lighter
vein, one is urged to suggest that it is the vein, one is urged to suggest that it is the
"phlogiston" in a balloon material which phlogiston" in a balloon material which
keeps it doing its job. The absurd theory that
it is the air pressure in the space inside which it is the air pressure in the space inside which
maintains a balloon's femininity can easily be maintains a balloon's femininity can easily be
disproved by making a tiny hole in the
balloon; too small to let the air balloon; too small to let the air out but large
enough to collapse any imagined air pressure
inside. Alternatively, we can show that the
goods travelling in a railway system travel goods travelling in a railway system travel
inside the rails, or an obstruction across between the rails, nearly touching the rails;
close enough to leave close enough to leave too little space for the
train wheels to get through This will prove tran wheeds to get through. This will prove rail way lines and it is apsurd to think that the
lines merely guide the flow of merchantis lines merely guide the flow of merchandise.
When all is said and done, however, the acid test is the question of whether the velocity of propagation of the energy (/electric) current is a function of the
characteristics μ, ϵ of the dielectric or of the conductor. When a seagull (or merely the reflection of a seagull) glides along above
(/below) the surface of the water, does its (speed depend on the nature of the air or of the water

Catt, M. F. Davidson, D. S. Walton

 DESIGNSI find it quite incredible that Wireless World should see fit to publish yet another article domestic sound reproduction, in which purely academic distortion levels are pursued purely cacademic caistortion levels are pursued
virtually for their own sake. The author
states that he designed the states that he desisned the amplifere with a
view to its being "competitive with current view to its being "competitive with current
commercial designs." Can this really be an altruistic aim? In my experience the second and third harmonic distortion audibility
threshold (even where skilled sound engineers and producers are concerned) is in the region of 0.1%. Given that this is so, then an
res amplifier with second and third harmonic
distortion not in excess of 0.1 over its entire bandwidth should sound as good as one with 0.0002% second harmonic distortion, all other actors being equal - entrance slew rate limitations, overload effects, audibility
threshold of high harmonics, et al. A multitude of exotic schools of thought currently abound to extol the 'sound' of
polypropylene capacitors, special loudpolypropylene capacitors, special loud-
speaker cables, discrete circuitry, valves, speatser craal times, amplification, $180 \mathrm{~V} / \mu \mathrm{s}$ slew,
rates. passive equalisation, minimal overall
feedback, etc. I challenge Wireless World to feedback, etc. I challenge Wireless World to
seek out the truth of this mysticism, rather
than to present conventional designs adnauseam. I wish to state that I in no way
whatsoever wish to depreciate per se the whatsoever wish to depreciate per se the
designs presented by Douglas Self and B. J. Cond, but rather to suggest that whilst their engineering approaches are interesting, they
are really grossly trivial in a world where the are really grossly trivial in a world where the
allowable second harmonic distortion on a studio tape machine is of the order of 3%,
where 70% of record pressings are defective where 70% of record pressings are defective
and electromechanical transducers from the cutting head to the loudspeaker are as yet
cutran imperfect.
To exem To exemplify: I have recently built Douglas
Self's Mk 1 advanced preamplifir Self's Mk 1 advanced preamplifier design
using TDA 1034N op-amps. Using horn-
loaded loudspeakers and Crimson Electrik loaded loudspeakers and Crimson Electrnik
amplifiers in a tri-amplified configuration I amplifiers in a tri-amplified configuration, I
perceive no difference. I am still waiting for perceive no difference. 1 am stil waiting
my friends to say "Your equipment sounds
different." The chances are high the myiffiends to say Your equipment sounds
diferent." The chances are high that your
recently acquired records were mixed in the recently acquired records were mixed in the
studio on desks stuffed with 'nasty' op-amps and transformers. Need I say more? and transion
Ben J. Dunca
Tattershall
 \section*{"TRIVIAL" AMPLIFIER}
 \section*{"TRIVIAL" AMPLIFIER}

Ben J. Dun
Tattershal
Lincoln

THERMIONIC DEVICES I know of nothing more likely to start an
argument between historians than that of argument between historians than that of
throwing into the ring a seemingly innocuous statement such as \& . . no doubt that Fleming's diode ushered in the thermionic
'valve era . . ${ }^{\text {a }}$ (November 1979, p.94). Dare I suggest that Edison's patent of 1884 Dare I suggest that Edison's patent of 1884
(nothing to do with wireless of course) covered a most practical application of ther-
mionics to the control of a generator? For all mionics to the control of a aenerator? For all
I know this may also have been the first thermionic closeddoopp servo-mechane ism to
be described. But Edison was very busy be described. But Edison was very busy
inventing hundreds of other things, and can perhaps be excused for not applying his "so-called" effect to wireless, the phonograph, moving pictures etc. as well.
What is most puzzling is that Fl . apparently sos slow off the mark $-\boldsymbol{a}$ whole 20 years before the penny dropped! Of course he had been fairly busy around 1900 combining
the more recent ideas of Tesla, Thomson and Marconi into the Poldhu transmitter, a very
Mand substantial engineering task; and this may
have diverted his have diverted his mind from developments in
Germany, such as Wehnelt's lime-coated Germany, such as wehnelt's lime-coated
thermionic filament also published in 1904 thermionic filament also published in 1904
which was incorporated into the Braun-
Wehnelt cathode Braun, of course, who later shared a Nobel prize with Marconi.)
In the event it must have been a little
humiliating for Fleming the humiliating for Fleming that there was not
more interest in his thermionic diode more interest in his thermionic diode
(though it may have stimulated the invention of the the crystal detector). The reasons were
that the carbourundum detector was simpler and more rugged and the Marconi magnetic detector needed no battery. Thermionics really took off in a more obvious fashion
about a decade later, with the advent of about a decade later, with the advent of
better vacua and other technical improvements. In fact, it became important enough for litigation over rights, and though neither side seemed to emerge with much of value,
the ruling did confirm Fleming's legal title to his (rather gassy) diode valve. Desmond Thackeray
University of Surrey
University of
Guildford

MICROPROCESSOR PERIPHERAL ICs

A problem exists in the design of circuits
using the latest microprocessor peripheral using the latest microprocessor peripheral
i.c. . would like to suggest a solution which, although using one more pin of the package,
would require little complication of the i.c. would require little complication of the i.c., The problem is evident when several such
peripherals interface to the same data bus, peripherals interface to the same data bus,
and includes one or more sets of
bi-directional bus buffers and
bi-directional bus buffers. In order to ensure
that these buffers are always driving in the that these buffers are always driving in the
correct direction, the logic designer finds himself duplicating circuitry that must
already exist inside the ic already exist inside the i.c. Some peripheral.
chips put data on the bus for up to one of chips put data on the bus for up to one of
three different reasons. To determine the direction of the relevant bus buffer, all these
states must be decoded and ORed to ether states must be decoded, and ORed together, chips on that section of the bus.
My suggestion is that a 'drivers active'
function be brought out to a pin of each function be brought out to a pin of each
bus-interfacing device. Relevant bus buffers bus-interfacing device. Relevant bus buffers
could be turned around by a simple OR of these few signals. Even greater simplicity
could be achieved if the 'drivers active' lines were open-colle. If feel sure that this line would also be useful in the debugging phase of micro-
processor support circuitry where proble of bus conflicts and floating buses may have to be resolved.

E. J. Board St Albans Herts

St Albans
Herts

PRE-AMPLIFIER WITH
NO T.I.D.
Potential builders of the Miloslavskij passive de-emphasis preamplifier (Aunust issue)
might like to note that its RIAA network is grossly in error. Correct design formulae for passive de-emphasis can be found in the
literature ${ }^{1}, 2$ Stanley P. Lipshitz
University of Waterlo

References

1. Livy, W. H.. Disc replay equalizers. Letters to the
editor, Wireless World, vol. 63, January 1957, p.29.

ELEMENT OR DIAMOND?

While experimenting in television during the mechanical" period, I realised that the based on theory of thessboard idea, is a fallacy. ound that a continuously moving spot can-
not resolve a picture detail as small a tself smuxges along the traced line, generating a maximum frequency only two-thirds that
calculated by the element-based line standard formula. This was proved by the failure of the "low definition" broadcast to reach the frequency of 13 kHz z, the theoretical (30 lines with aspect ratio $3: 7$) at $121 / 2$ pictures second. Only about 9 kHz was achieved, yet he same erroneous formula was employed or the 405 -line transmission, and is still the
basis of the 625 -line standard. "Line" still masis of "line 625 -line standard. "Line" still My letter in Wireless World for July 196 explained how practical engineers, with a calculated "high frequency" definition to achieve, focus spot-size to half-elemental
$(4 / 9)$ by reducing spot diameter to two-third $(4 / 9)$) by reducing spot diameter to two-third
of line-pitch. This is easily proved on any monochrome screen by reducing picture height until the traced lines touch; the closed
up lines leave about one-third of the screen up lines
dark.
I even
esme
I eventually found a spot shape which spot: the "playing card" diamord large the experimental discs (thin black card was adequate) I turned the original square elementars aperture on end, then extended it along the scan. Each field traced doublespaced lines (which just touched), and alternate lines "interlinked" their lines by
half-overlap both ways. Diamond scan ex posure tapers uniformy. aboum line-centre, so two interlinking lines conceal structure: The line-free complementary scanning allows
diamond size to be chosen for desired defini-
tion only, with resolution enhanced by the
reduced scanning depth of the diamond The ideal "diamond" focus may be impor sible electronically, and would be wasted on a 625 -line picture. A close approximation is
possible by extending the existing possible by extending the existing half-
element spot vertically to points, while comelement spot vertically to points, while compointed oval, resembling the contracted pupil
of a cat's eye, would raise resolution to the of a cat's eye, would raise resolution to th
standard's limit. Astigmatic focus has been tried but the elemental line" taboo seems to have prevented any attempt at elongating the spo
sufficiently to achieve complementary overap. This inexpensive focus correction a camera and receiver would improve defini-
tion and remove all trace of visible structure from our screens.
fo.
Itopkins
A. O. Hopkins
Worthing

Worthing
West Sussex

JOHN SCOTT-TAGGART
Your brief, but nostalgic, obituary on John Your brief, but nostalgic, obituary on John
Scott-Taggart (p.55 october 1979) recorded
his prowess as an engineer. In his earlier days Scott-Taggart (p.55 Octoober 1979) recorded he was also a a ormidable showman. From the mid-twenties to the early thirties, thousand
of experimenters were persuaded that the 'ST' series of circuits had supernorma The celebrated 'ST100' offered plenty of cope for compulsive twiddlers, with two uning capacitors, plug-in coils with variable oupling, filament rheostats and a cats whisker. Although it was an essentially
simple reflex arrangement, Scott-Taggart howed real originality in circuit-diagram presentation. Scorning ordinary logic in Oyout, he produced bafflingly devious links. from an 'ST100' diagram, which involved 15 crossed wires. The other one in the same
circuit, but as it would more commonly have circuit, but as it would more commonly hav
been drawn 50 years ago - with only thre been drawn 50 years ago - with only three
crossovers [Diagrams supplied.-Ed.] The
contrast speaks for itself. ontrast speaks for itself
Kingston
Edinburgh, 16

RADIO AMATEUR

INVALID AND BLIND
CLUB
May I bring to your attention the change in
the title, secretary and address of the Radio the title, secretary and address of the Radio Amateur Invalid and Blind Club
Now celebrating its silver jubilee, the Club
is formed of invalid and blind members is formed of invalid and blind members
interested in the hobby of amateur radio their local representatives who undertake to help by visits, repairs and advice; and sup
porter members whose financial contribuporter members whose financial contribu-
tions enable help to be given. The sole con-
dition dition of membership in any of the above categories is an annual subscription of $£ 1$
minimum for Radial the Club newsletter which is issuud every six weeks.
F. E. Woolley (Mrs)
F. E. Woolley (Mr
Hon. Secretary

Hon. Secretary
9 Rannoch Court
${ }^{\text {Adelaide Road }}$
Surbiton
Surrey KT6 4TE

More on the scientific computer

Further details of the monitors

By J. H. Adams, M.Sc.

After publication of the scientific computer series (April to September for more information on the firmware. This article describes in more detail the machine code and BURP monitors in terms of hexadecimal machin code. Readers will need a hex print-out of the three p.r.o.m.s.s and tables published in the July 1979 issue of Wireless World.
Several readers have expressed incredulity at the thought of working directly in machine code rather thics However, the hex codes for 50 to 60 of the most regularly used operations can soon be learnt and, thanks to the logical
distribution of codes to operations, many more follow from these. The once-in-a-megabyte ones such as IN D (C). ED 50 in hex, can be obtained from the conversion table. This does not rule out working in assembly language and yourself, but in my experience the latter soon becomes tiresome and it is easier to write in hexadecimal.
When writing software it is useful to have a supply of the forms shown in Fig.

1. The instruction 18, a relative jump, should be pronounced one eight and not eighteen. Similarly, the second byte is
ne seven and definitely not seventeen you want jump simply make the jump byte the number of bytes (up to 7F) ove which execution must move, in this case $17-1$ row and 7 bytes, to reach the arget byte FF. For a jump back to the same target from the second 18 , calcu-
late the jump forward code to the next byte immediately under the target, 02 in this case, and then jump up row by row, decrementing the higher order hex character, i.e. from 02, F2, E2. When
using a jump back the byte must be in the range 80 to FD (FE and FF serve no useful purpose).
Machine code monitor Both monitors follow the same basi sequence as illustrated in Fig. 2. With address of the Z80 stack is set, the address for the top corner of the screen s loaded into the DE register pair which is then used throughout the monitor as v.d.u. operations, and the message READY is printed by the subroutine at 33CE. This is one of several routines in the computer which draws data from he locations directly following the cal of the routine. The program counter
which will have been pushed onto the stack, is exchanged with the contents o the HL register pair and then used as a

Fig. 1. Typical software form

pointer to that data before being ex-
changed back onto the stack, at the end of the routine, to cause a return to, in his case, 0010 . The start procedure the eleprinter output flip-flop and, usin the subroutine at 0355, reads in and ncodes a command from the keyboard. As explained in table 1 , only the first and ast letters are important to the sub routine. Whilst this limits the number of
possible combinations which will pro duce different codes, a byte by byt duce different codes, a byte by byte
comparison with a look-up table com prising all of the commands would use has been achieved (001 A), a comparison is made and if the code is not FC (the entry code for RUN) executions jump
over OD bytes for a further comparison ver OD bytes for a further compariso nd so on until a match is found whereupon a block of instructions is 0000 again. clears the rest of the top line, resets the last letters are important to the sub far too much p.r.o.m. space. After this

```
```

Sets tape interface tone to 2400Hz and then calls 255 long time delays - about 4 seconds. tro stop bits.

```
```

Sets tape interface tone to 2400Hz and then calls 255 long time delays - about 4 seconds. tro stop bits.

```
```

Sets tape interface tone to 2400Hz and then calls 255 long time delays - about 4 seconds. tro stop bits.
Sets tape interface tone to 240OHz and then calls 255 long time delays about 4 seconds.
Sets tape interface tone to 240OHz and then calls 255 long time delays about 4 seconds.
Sets tape interface tone to 240OHz and then calls 255 long time delays about 4 seconds.
Mransmits the byte in register A to the tape inerface, preceded by start bitand tom
Mransmits the byte in register A to the tape inerface, preceded by start bitand tom
Mransmits the byte in register A to the tape inerface, preceded by start bitand tom
Formats the hex byte in register A
Formats the hex byte in register A
Formats the hex byte in register A
Clils anw line on the telep\mathrm{ rinter.,}
Clils anw line on the telep\mathrm{ rinter.,}
Clils anw line on the telep\mathrm{ rinter.,}
List subroutine. Entered at 0317, the starting address musibelocdin ()
List subroutine. Entered at 0317, the starting address musibelocdin ()
List subroutine. Entered at 0317, the starting address musibelocdin ()
*)
*)
*)
A programmable time delay.T.The computer looss trough six E3s, long exchange instruction which, if used in pais, does no

```
```

A programmable time delay.T.The computer looss trough six E3s, long exchange instruction which, if used in pais, does no

```
```

A programmable time delay.T.The computer looss trough six E3s, long exchange instruction which, if used in pais, does no

```
```



```
```

lum,

```
```

lum,

```
```

lum,
The Mlgoritm for encoding input commmands. Returns with last le.
The Mlgoritm for encoding input commmands. Returns with last le.
The Mlgoritm for encoding input commmands. Returns with last le.
Clears the v.d.u.... leaving DE Unaffected. LODD, FIND, COR and in BURP lists,
Clears the v.d.u.... leaving DE Unaffected. LODD, FIND, COR and in BURP lists,
Clears the v.d.u.... leaving DE Unaffected. LODD, FIND, COR and in BURP lists,
Displays the contenstsof A assatwo charater hex byte.
Displays the contenstsof A assatwo charater hex byte.
Displays the contenstsof A assatwo charater hex byte.
Calls a new line on the v.d.u. and clears the remainder of the current one.
Calls a new line on the v.d.u. and clears the remainder of the current one.
Calls a new line on the v.d.u. and clears the remainder of the current one.
Displays the string of characters following the call in the program block up to byte 1D.
Displays the string of characters following the call in the program block up to byte 1D.
Displays the string of characters following the call in the program block up to byte 1D.
Cisplays the string of characters following tI
Cisplays the string of characters following tI
Cisplays the string of characters following tI
Llol

```
Llol
```

Llol

```
Reads in a single keyboard character and, if a letter adds 6, then truncates to four.bit binary (used as part of 03E7).
```



```
1. Low level
```

An exception to this is for the code mmediately to 0042 . This avoids one of he subroutines which have to b located at particular points in the memory map. Several subroutines can e called by single byte instruction RSTs. These were originally intended for use with the 8080 and the Z80's " 8080 mode" interrupt response which, after receiving the interrupt, calls for the iterrupting device to place one or more instruction bytes onto the data bus fo used, the single byte calls are a useful space-saver where a subroutine may be short and often needed. The subroutine which is avoided in this case at 0020 is on the v.d.u. At address 0028 is a jump to a subroutine which would require more than eight bytes. It is intended for use during the testing of machine code programs and when its RST byte EF is inserted into the program by using an
ALT, it will suspend the execution of the program and display the contents of the HL, DE and AF registers, the point at which the EF was found, and the last ntry onto the stack. Note that whilst

Table 2. Machine code routine starting addresses.

002 F	FILL	0042	RUN	004D	mov
0099	LOAD	00F7	prom	0120	ALT.
${ }^{0113 E}$	ALPH	014 D	${ }_{\text {PRINT }}$	016 F	COR
01 CD	${ }_{\text {FIND }}$	0203	TAPE	0226	READ
0146	LIST				

the one byte call CF for this address is used as an end command to a program. Although it does not do the same as C3 0000 , because the stack is immediately and saves two bytes
The two interrupts also use fixed service routines. At 0038 is the maskable interrupt routine which reads in and stores number cruncher data using HL as a pointer. At board, first checking if the computer is at a HALT byte (76) and reading in the keyboard if it is or reseting the computer if it is not (006B is an example of a software does not make use of the control characters available in ASCII except for the RETURN byte 0 D , which it translates to 1F. Instead, it blanks off the top three bits of any codes above 3 F (mainly the letters) at 007 C and moves
lower and upper case codes into the area 00 to 1 F . This compression of the ASCII code into six bits produces bytes which are compatible with the v.d.u. character generator and this makes many places in the monitors, a simple operation.
Beyond the service routines, the routines for the various operations in exception of some unprogrammed space at $0130-9$. This space may be used by overprogramming the jump byte $011 F-10$ and the ten bytes as required. Note that the LIST (01A4) routine is just a call to a subroutine at 0317 because an uired as part of the ALT routine. As this is the last command code to be checked, the call is conditional on a match so that. if the code is undefined, executi
passes to 01A9 and a software reset.

$\begin{aligned} & 0400 \\ & 042 \mathrm{E} \end{aligned}$	Used in graph plotting. Converts a number stored in 1 EOO-F to the nearest integral value. Negative values are put to zero. Executes MM57109 instruction present in register A. The sequence checks that the 57109 is ready, outputs the instruction with the hold off waits for the ready to go off and then puts the hold on again.
0446	Repeats 042 E for the string of 57109 instructions following the call in the main program. The list is terminated by FF.
0452	Jumps over the next word in the program line. Used in FOR statements to miss STEP and UNTL.
0460	Outputs the contents of the 57109 X register to locations 1FF4-1FFF and then reformats it into the location specified by the contents of register A at the call, i.e. 1E10 for 01 in A, 1E20 for 02 etc.
04BA	Convers denary digits in the texit to binary in register C. HLL must be pointing to the first digit which must be in register A.
04 D 4	Graph plotting routine which scales the variables to be plotted to the screen matrix of 63×126. It divides the variable specified by the
${ }^{04 E 6}$	Jumps any spaces in the text and then analyses the following for (a) operators (04 FB) which are converted by algorithm to 57109 code and executed (b) numbers (050F) which are rearranged and then input to the 57109 (c) instructions (054 E) which are encoded by algorithm and the result used as part of the address for the location in a look-up table (positioned at the end of the r.o. m .) where the 57109 instruction code encoding words the standard algorithm two times first plus last is used but to compress the range of codes produced, those under 20 have 20 added and those above 50 are reduced by 10 . This compressed byte is then added to $07 B 4$ which is used as a pointer to the instruction required. Some instructions need two bytes for their execution, the first being 20, e.g. 24 is SIN but 20 then 24 is SIN^{-1}.These are encoded in the table and detected at 0566 by bit 7 of the instruction being set.
058A	Handles the 57109 BR (branch) output which pulses low whenever one of the 57109 test instructions proves to be true. The subroutine starts the execution of the instruction in register A and then reads in the 6 -bit data word from the 57109 . The four digit out lines are blanked off so that only the READY and BR lines, both initially high, get through (0591). By continually re-reading and jumping back on even parity, the $Z 80$ is effectively waiting for one of these two lines to become active. If it is the BR line the $Z 80$ outpus a NOP to the 57109 because, When the last part of that loop, is read into A and masked for bit 6 so that the state of this line and hence the zero flag in the F register is set on a successful test.
05A9	With the HL. register pointing to a variable in the text, and with that variable in register A, this subroutine computes the variable's address, formats it into 6 bit ASCII in the area 1 EOO-F and converts results in the range $0.0001-99999999$ to floating point. The byte in the text is checked and, if a digit, is used as the new mantissa digit count to be stored at 1 FEO (063A). Whether or not the contents of 1 FEO are then drawn out, the block from 0641 to 0681 rounds off the figures after the decimal point to the extent indicated by this digit. Blanked figures are roplaced by ASCII spaces. The mantissa is then sent to the v.d.u. and the text interrogated again, this time for a comma, which has the effect of suppressing the printing of any spaces and close packs the digits in the number (0693 -7). Finally, at 06 A 3 an E for the exponent is looked for and iffound the exponent is displayed. The
обвв	Prepares the store area specified by the contents of A using 0714 and then reads in a number from the keyboard, converting standard and non-standard scientific and floating point arrangements to the machines standard format.
0714	Prepares a number store by dumping 900 Os , 60Fs and a 3 F. This means that 068 BB dump the input data into the store without having to worry about leading or trailing zeroes or the non-existance of an exponent (0Fs being NOPs as well.). The 3 F terminates number entry to the 57109 as well as being a NOP therefore two consecutive variable inputs to the 57109 do not have to be separated by an ENTER as with reverse polish calculators
0729	Algorithm for entering words from keyboard tiwo times first letter plus last).
0736	Inputs denary keyboard digits to binary in C.
074A 076 D	Converts A to three digit denary and displays on v.d.u.
07A2	Data for MOD command.
07AC	Forms the address for the start of a variable store area in HL from the variable code in A.
0787 0706	Display a number formatted by 0549 in 1 EOO-F displaying E for OB, for OA, a space for OF, - for OC and ASCII digits for 00 to 09 .

Table 3. BURP subroutines

WIRELESS WORLD, JANUARY 1980
Table 4. Format for storing and printing three variables

Table 5. BURP routine starting addresses,

0835	DEL	08 C 7	mod	0877	D
0929 0977	LOAD	092 F	LIST	0939	DUMP
099A	input	09B2	print	0908	END
O9DF	gоto	о9ев	LET	OA04	
OA43	WRITE	OA83	ERASE	${ }^{\text {OABF }}$	TO
OAPE	${ }_{\text {cosem }}^{\text {GOSXT }}$	${ }_{0}^{0 A A A}$	RETURN	OAB2	For

From 0254 to 03 FF are the sub routines listed in table 1. When necessary, the subroutines PUSH reg-
isters to be used solely within the subroutine and then POP them back before the return so that no interference is caused to data within the main procontained but some, e.g. 02EC, jump on to others for their completion. As subroutines are sometimes called within subroutines, within subrouthes etc., into the $\mathrm{r} / \mathrm{w} . \mathrm{m}$. from IFDF, should be left free to at least 1 FC 0 for the computer's use. Like C 7 , other space savers will be found in the subroutines, e.g. AF
to clear the register A instead of 3 E 00 , A7 to, set the flags according to the contents of A. To save byte space some apparently unnecessary bytes appear, e.g. E3 at the start of the routine at 03 C 4 is included so that it and 03 CE can share
the same ending. Care is needed when writing subroutines because with a lot of PUSHing, POPping and EXchanging taking place it is important to ensure that the bytes called back off the stack by the return command at the end of a ones. I have found this to be the Z80's most adept way of erasing painstakingly developed programs. This type of error is common when a conditional return is used as in 034E which prints are zero. Ideally this should have pushed AF initially as it uses A and F, but to also arrange for them to be restored on return would extend the routne to arlier is a very powerful tool for sorting out these problems.

BURP monitor

For the BURP monitor the first p.r.o.m. is solely for subroutines whilst the second. contains the operating system
which makes use of them. Details of the subroutines are given in table 3. In BURP, program material is loaded from

0 C 00 on, the area 1 E 00 to 1 E 0 F is used for the formatting of results to be printed and 1E10-F stores variable FOR loop step. Table 4 shows the for matting used for the storage and printthat all results are stored scientifically o maintain eight digit accuracy. Although the MM57109 can operate in cientific mode and let the stay in the he results within the range 0.0001 99999999 to floating point for display. At 0800 the stack pointer is set and DE is assigned as the screen pointer gain. BURP is then displayed and the digit count is set at 04 (0817) and the screen position reset to 8008 ready for the input of a command. 081E to 0823 is

Fig. 2. Basic operating seque ice for both

harmless nonsense and 0824 to 083 resets the number cruncher by sendin he operation 3 F (NO OP) with the hol o the 57109 off, pausing for 8 ms and then reapplying the hold. During this sequence the interrupt mode is set but he number cruncher, the somewhat capricious behaviour of the i.c. before it has been reset has no effect upon the rest of the system. The i.c. is then given master clear (2F) and by a multiple executive subroutine at 0446 (0832). At 0838 another command encoder called to read in a command from the keyboard. The algorithm used here is only two letters are required. However this algorithm is capable of producing far greater list of codes and therefor educes the chance of two words de riving an identical one. As with the low level monitor, routines entered by
recognition of this code ensue, see table 5. The start of the last of these, for the UN command, reads in and encode he line number input in the comman ointer is then set to 8040 , the start he second line, and C is decremented pushed, popped, incremented and then pushed again. Four of these operations might seem to do nothing to C and o ffect is to store the current line number on the stack. When the execution of ine is completed however, the next lin number can be computed and saved by returing to the next line number, wop o remove the old number followed by ump to 0981 will load this as the nex ine to be executed. As all lines wil terminate by jumping back to one of heturns to 0800), to avoid absolut jumps (i.e. jumps to specific addresses) elative jumps to these two critical
points are string out through the thir p.r.o.m.

A line of BURP is stored as the hex byte ED, the line number in hex, the the byte $1 F$ to signify its end. The end of the memory block in use is signalied by he byte C0. With the commands ADD DEL, DUMP, LIST and RUN involving
line numbers, the interpreter scans the line numbers, the interpreter scans the program block up to $C 0$ and looks for
$E D$ followed by the line number in question. During a RUN the next word in the line is encoded using the two times first plus last algorithm (0993) an mands are strung end to end and each is preceded by an immediate compare and a jump-on-not-zero (20 hex). The last command. HALT, compares at $0 B 0 \mathrm{~F}$ and if a match is not made the computer jumps over the single byte 76 of the
HALT routine and goes on to the next ine by executing several relative jumps back to 097F. This explains why there is no routine for REM as it and any unre-

Extended IF statements. Any statement may be conditioned by IF.
Printed strings in in INPUT as well as PRINT Pratements. WRITE, GRAPH and AXIS statements.

TSS makes current result positive blanks digits following decimal point
blanks digis preceding decimal poin places pseudo-random number into the MM57109
No need for LET at the start of LET-type lines. \qquad
Hardware changes required
The wiring of several spare keys.
P.r.o.m. required
ignored (the very requirement for REM). Throughout the monitor the register pair HL address the program
block contained from 0C 00 onwards whilst B and C are available for general whilst B and C are available for ge

Subroutine p.r.o.m
As far as possible, subroutines have been written which can be called in many different places within the interpreter. This particularly applies to 04E6
which can be thought of as a basic text handler which recognises and deals with words, variables, numbers and operators.
In the next part a new monitor will be described, the features of which are
given in table 6. I would like to thank all of the readers who have contacted me I hope that the new system will meet their requirements. Lists of the new firmware will be available from Wireless World (editorial department) upon
receipt of a large s.a.e. and these will be a useful accompaniment to the details in part two.

The author is offering a set of three p.r.o.ms programmed with the new, atively, exardware for $£ 30$. Alterngrammed for $£ 6.50$ (both plus 35 p post and packing).

Micro show is bigger

Personal computers are prominent among the systems to be displayed and disussed at the Microsystems 80 conference and exhibition, January 30 to February 1. Sponsored by Wireless computer journals, this annual event has grown in size to such an extent that it has had to be moved from its hotel venue to the Wembley Conference Centre (opening hours, 0930 to 1800 hours each day).
The 1980 conf programme ranging from an introduction to microprocessors to an overview of the latest developments in microelectronics. Topics include: tech-
nology update, micro processor software, controlling microprocessor pro-
jects, microprocessor applications, bridging the hardware/software gap, The conference will concentrate on personal computers on its third day. There will be buyers' forum sessions servic people in selecting goods and services, and a one-day appreciation
course to introduce managers to the use of microprocessors in business and industry. Delegates' fee for the con-
ference is $£ 145.50$, including ference is $£ 145.50$, including v.a.t. and
booking forms are obtainable from the organizers, Iliffe Promotions, Room 821, Dorset House, Stamford Street, London SE1 9LU (telephone 01-261 8113). The exhibition, with some 110 stands, is
open to all at no charge, whether or not the visitor is a conference delegate.

Literature

Received

Reference sheets on the world's electronics Reference sheets on the world's electronics
industry produced by Mullard, showing exports, consumption, production of a variety of products. Sheets can be obtained from
Mullard Ltd, Mullard House, Torrinton Mullard, Ltd, Mullard House, Torrington
Place, London WCIE 7HD.
Leaflet on the ZIP KDP computer terminal, comprising $30 \mathrm{ch} / \mathrm{s}$ dot-matrix printer, keyDynamics, Data House, Springfield Road,
$\begin{aligned} & \text { Hayes, Middx. } \\ & \text { WW402 }\end{aligned}$

Fourteenth edition of Intel News contains descriptions of an 8086 single-board comouter, 1Mbit bubble memory and other items (UK) Ltd, 4 Between Towns Road, Cowley, Oxford OX4 3NB.
Solid-state relay applications manual specification, preotection circuits, loading and failure modes, with typical circuits, is Ltd, Diss, Norfolk IP22 3AY.
WW404
ull ordering information on the component parts of the Elma collet knob range is aval Radiatron Components Ltd, 76 Crown Road Twickenham, Middx.
Signal-conditioning amplifiers in the SE 990 series are described in a leaflet now available
from Spur Road, Feltham, Middx, TW14 OTD. ata for meteorologists, oceanographers ships, without attention from the crew,
collated by a data collection platform and transmitted to a satellite for retrieval. The McMichael platform is briefly described in new leaflet from McMichael Ltd, Wexham
Road, Slough, Berks SL2 5EL. WW407
Leaflet from Astralux gives full details of in $10,20,30$ and 40 A versions. Sales depart ent, Astralux Dynamics Ltd, Brightlingse
election of test equipment for logic-testing is presented by Electroplan in a four-page eaflet, obtainable from Electroplan Ltd, PO Box 19, Orchard Road, Royston, Herts.
SG8 5HH. WW409
Various types of panel meter, counters cintalogue, produced by Techmation, Ltd, 58 dgware Way, Edgware, Middx. HA8 sJP.
rochures on the American Crown (Amcron) range of audio equipment can be had from he sole UK distributors, HHB PA Hire an Sales, Unit F, New Crescent Works, Nicoll
Road, London NW10 9 AX.

A collection of tools for bending and cutting component leads and for handling i.c. packages is detailed in a Wybar catalogue from Eraser International Ltd, Unit M, Portway
Industrial Estate, Andover SP10 Industrial Estate, Andover SP10 3LU. WW412

ILLUMINATED POCKET

 MICROSCOPE WITH MEASUREMENT GRATICULE The low-cost illuminated pocket microscope designed for close observationand measurment of minute detail too small
Gives a sharp send brilliant vision with wide wield of view at at $20 \times$ the nakned eye
Gification, Gives a asharp and brilliant vision w with wide field of view.
plus built-in focusing system and illumination system.

Ideal for close inspection of PCB, components, metals, depth of cracks,
samples, minerals and tissues A valuable aid to samples, minerass and ors
engineers and laboratory personnel.

Complete with batteries and plastic pocket case at the special price of
$£ 13.99$, including postage and V.A.T.
$\begin{aligned} & \text { The graticule is calibrated to } \\ & 4 m m \text { overall in increments }\end{aligned}$
$\begin{aligned} & 4 \mathrm{~mm} \text { overall in increments } \\ & \text { of } 0.1 \mathrm{~mm} \text {, with angles }\end{aligned}$
$\begin{aligned} & \text { shown from } 300^{\circ} \text { to } 90^{\circ} \text { and } \\ & \text { holel sizes of o., O. O., } 0.4 \\ & \text { and } 0.5 \mathrm{~mm} \text { diameter. }\end{aligned}$

CASH WITH ORDER
Carriage 50 . VAT 15%.
Account facilities available Account facilities available
for established customers.
Ooutaios given for
large quantitites.

Businesses havebeen builtonour ferrites. Oursincluded.

If you're a manuacturer, even co they'll let your product down components must be checked
And it's particularly true ff ferrites. Apex are the sole UK agents for one of America's largest ferrite manufacturers,
Fair-Rite. Apex use Fair-Rite products in their own manufacture of wound components and know how good they are.
ond pot cores to E cores, shield beads and baluns. Full data is available on request. The most useathe kit business. that contains a versatile selection of ferrite cores that will enable designers of RFI suppression devices and wideban transformers to opt
designs very quickly
A comprehensive data kit is included that contains
impedance vs frequency curves ateband pedarmer desiencincy curves, attenuation curves and It costs just $£ 10.00$ (cheque or company order). it's really too good to miss. Apex. Big enough to look after you. Properly
Apex Inductive Devices, 27 Abbey Industria Estate, Mount Pleasant, dwat murtuer detail

Top marks

 in one clear sweep.Feedback to contain a lot more features for your money. And you'd
beright-theSFG606 with its crisp frequency markerd be right-the SFG 606 with its crisp frequency marker does just that It sweeps up to 4 decades of frequency-bi -directionally. signal distortion with absolute precision over the entire sweep range. It features a choice of decade or octave sweep - so it's ideal for narrow band analysis. It provides sine, square or triangle outputs over the frequency range 0.01 Hz to 1 MHz .

And with that beautifully sharp, fine line frequency marker that gives you accurate determination of spot frequency on the display, the SFG606 really does score top marks. Read all abou the SFG606 and all its companion test instruments in th
Feedback 600 range Send to Feedback 600 range. Send to
Feedback for literature today Feedback

The new SFG606 passes even the testiest tester's test.
ww - 014 FOR FURTHER DETAILS

OEM - let Drake Transformers advise you on a component specification and design to solve that special problem. Pre production prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design other wound components for large and small quantity production.
Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED
South Green Works Kennel Lane Billericay Essex CM11 2SP
Telephone: Billericay (02774)51155 Telex: 99426 (prefix Drake)

Two-metre s.s.b. and f.m. transceiver-4

Alignment procedure and operating notes

by G. R. B. Thornley, G2DAF

For satisfactory alignment the fol lowing test instruments will be re quired: a c.w. signal generator; an absorption wavemeter; an AVO Model 8 or meter; a digital frequency meter; and an audio oscillator
It is advantageous to test and align as many units as possible before final assembly in the chassis, so the following method. Initially, each unit should be connected to a stabilized power supply set to 12.7 V , with a milliameter in series to monitor the current drain and to fault condition on the circuit.
S.s.b. generator unit

Connect the power supply, still set to the s.s.b. generator board and wire an external 1 -pole, 2 -way switch in place of $\mathrm{S}_{1 \mathrm{a}}$, with the pole connected to the power supply. Check that there is 9.1 V feeding Tr_{4}. Set the slider of R_{11} to mid the valve-voltmeter to the test point TP. Adjust the core of L_{5} for maximum carrier output - this will be in the rang 0.3 to 0.5 V r.m.s. Operate the temporary
switch $\mathrm{S}_{\text {t }}$ to select crystals XL_{1} and $\mathrm{XL}_{\text {a }}$ switch $\mathrm{S}_{\text {a }}$ to select crystals XL_{1} and XL oscillating at approximately equal amplitude.
Remove the valve-voltmeter probe and connect the digital frequency meter point TP. Switch to the l.s.b. crystal and adjust C_{30} until the crystal is on exactly $10,701.5 \mathrm{kHz}$. Next, switch to the h.s.b crystal and adjust C_{32} until the crystal is on exactly $10,698.5 \mathrm{kHz}$. (The autho C_{29} and C_{3}, were necessary for the crystals used in the prototype, and these were soldered across C_{30} and C_{32} on the etched side of the p.c.b.) The i.f. gain is and Tr_{2}. Initially, set the R_{2} slider to mid position. Unbalance R_{11} by turning the slider to one end of the track, and adjus the cores of L_{4}, L_{3} and L_{2} for maximum f. output, montoring by connecting to the input connection of the s.s.b. filter (junction of C_{44} and R_{30}). Disable the carrier oscillator by removing the 12 V connection to the temporary switch and
cates a zero reading. If this is not the case, the i.f. stages Tr_{2} and Tr_{1} are
unstable, and R_{2} requires adjusting to reduce the gate 2 potential of the transistors until stability is ensured.
Reconnect the 12 V supply to the temporary switch and balance the diode modulator by adjusting R_{11} and C_{18} in turn to the point at which the valve-
voltmeter indicates zero reading. Note that C_{18} is not connected by the p.c.b. and must be connected by a wire link to one side of R_{11}. If adjusting C_{18} does not improve the modulator balance, transfer the link to the of screened cable
With a short length of running along the top of the p.c.b., connect the "A out" terminal post to the "A in" terminal post. Transfer the valve-voltmeter probe to the "I.F. out" nect a microphone to the "Mic" terminal post and adjust R_{25} for maximum gain. If all is well, a whistle into the microphone will produce an s.s.b. signal and will deflect the poiter of the r.m.s.

Connect an 8 -ohm loudspeaker to the circuit, transfer the 12.7 V supply to the +12 V amplifier terminal post and adjust R_{55} for exactly 6.35 V at the junction
of R_{60} and R_{61}. Open circuit the wire link ${ }^{\text {of }} \mathrm{R}_{60}$ and R_{61}. Open circit TP and the ground plane, and connect the AVO, on the $1,000 \mathrm{~mA}$ range, in lieu. Adjust R_{75} for a quiescent $\operatorname{Tr}_{13}, \operatorname{Tr}_{14}$ collector current of 20 mA . Set the audio signal and connect it to the "A in" terminal post (connection to C_{69}). Advance the audio generator output to 100 mV r.m.s. while watching the AVO reading, which
should increase to $250-300 \mathrm{~mA}$ A clean should increase to $250-300 \mathrm{~mA}$. A clean
undistorted note, at full volume, should be heard from the loudspeaker. Reduce the audio drive to about 100 mA collector current and swing the audio generator output frequency from 300 to
$3,000 \mathrm{~Hz}$. The sound amplitude should $3,000 \mathrm{~Hz}$. The sound amplitude should without distortion at any frequency. Remove the AVO and reconnect the link. (Note that R_{75} is soldered across D_{13} on the etched side of the p.c.b.)
Temporarily bridge the "A out" terof R_{44} and C_{64}) to the " A in" termina post of the audio amplifier using
power supply to the +12 V RX terminal post, check that the source rail is at 3.3 V
and set the a.g.c. rail to 5.5 V by adjusand set the a.g.c. rail to 5.5 V by adjus-
ting R_{65}. Set the wiper arm of the balancing potentiometer R_{45} to mid position, connect the signal generator, set to exactly $10,700 \mathrm{kHz}$ to the "IF. 'in" terminal post (input to C_{92}) and advance
the r.f. output until a 1.5 kHz tone can be the r.f. output until a 1.5 kHz tone can be
heard from the loudspeaker. Adjust the cores of L_{9}, L_{8} and L_{7} for maximum output while progressively reducing the signal generator output to avoid overloading th dondio stages.
Make a screened-cable link from C_{62} to the prain of $\mathrm{Tr}_{\text {g }}$, on the underside of and R_{63} to a 1 mA -movement S -meter. With no signal generator input, set the S-meter to zero by adjusting R_{63}. This will alter the a.g.c.-line potential be${ }^{\text {cause } R_{63} \text { and } R_{65} \text { interact, so it will be }}$ necessary to reset R^{2} Repat the two adjustments until the S-meter reads zero and the a.g.c. reads 5.5 V . Set the signal generator output to 10 mV and adjust the core of L_{12} for maximum S -meter reading. Reduce the signal generator output to $100 \mu \mathrm{~V}$. If all is well the meter should give about an S9 reading. When the transceiver is com-
pleted, R_{66}, which controls the S-meter sensitivity, can be set to obtain an S9 reading for a $50 \mu \mathrm{~V}$ two-metre-band signal.
Reduce the signal generator output to zero, and the S-meter should return to
zero. If it does not do this, it means that the carrier oscillator output is leaking into the i.f. amplifier. Connect C_{65} to one side of the balanced-modulator potentiometer, R_{45}, and adjust R_{45} and C_{65} in obtain a zero indication on the S -meter. If adjusting C_{65} does not improve the balance, remove the link and connect C_{65} to the other side of R_{45}. While making these adjustments ensure that
the correct h.s.b. crystal $(10,698.5 \mathrm{kHz})$ is the correct h.s.b. crystal ($10,698.5 \mathrm{kHz}$) is
switched into operation. If balance cannot be fully obtained and C_{65} is at full capacity, wire a 25 pF ceramic capacitor across C_{65} on the underside of the p.c.b across C_{65} on the
and readjust C_{65}.
F.m. generator unit

Connect a $100 \mu \mathrm{~A}$ f.s.d. S-meter to the board. Turn the if. gain control. ${ }^{\text {sinator }}$

Fig. 18. S-curve for the CA3089E f.m.acrystal discriminator
maximum, and inject exactly into the "F.M. in" serminal generato into the "F.M. in" terminal post, at
level that starts to deflect the S-meter (Note that the meter will read approximately $50 \mu \mathrm{~A}$ with no signal input.) Adjust the cores of L_{14} and L_{15} to obtain maximum same time as the tuned circuits. At brought onto resonance, reduce the signal generator output to avoid overloading the i.f. stages.
Set the signal generator input to
obtain an S-meter deflection obtain an S-meter deflection of three-
quarter full scale and connect the digital frequency meter in parallel with the: signal generator so that the frequency can be monitored. Connect the AVO, on the $250 \mu \mathrm{~A}$ range, to the two test points show a reading, reverse the connecting leads. Check that the meter is indicating $10,700,000 \mathrm{~Hz}$ and carefully adjust C_{111} until the AVO reading falls to $0 \mu \mathrm{~A}$. Carefully alter the generator frequency.
until the AVO reads $50 \mu \mathrm{~A}$ and make a note of the frequency. Repeat for $100 \mu \mathrm{~A}$ and $150 \mu \mathrm{~A}$ and note these frequencies too. Go back to the $0 \mu \mathrm{~A}$ reading and reverse the AVO connecting leads. Set note the frequency and again repeat for $100 \mu \mathrm{~A}$ and $150 \mu \mathrm{~A}$. Plot the readings taken on graph paper to obtain the crystal discriminator S-curve. This should look like the graph shown in Fig.
18, and it should be noted that a signal 18, and it should be noted that a signal
deviation of plus or minus 10 kHz produces a detector output of plus or minus $150 \mu \mathrm{~A}$. The curve should be symmetrical about the $10,700 \mathrm{kHz}$ centre, and have straight lines indicating low
distortion. Note that the crystal XL_{3} distortion. Note that the crystal XL_{3} tion.
Connect the valve-voltmeter probe to
"FM out" terminal post, and the +12 V
supply to the " +12 V TX" terminal post Set the slider of R_{101} to give maximum gate 2 voltage, and adjust the core of L_{19} valve-voltmeter and connect the d.f.m. " "FM out" t and connect the d.f.m ore of L_{20} until the carrier crystal XL exactly on $10,700,000 \mathrm{~Hz}$. Note that crystal XL_{4} must be cut for paralle resonance operation.
Wire the microphone to "Microphone "n", and high impedance headphones to maximum audio gain. Speak into the microphone, and if all is well this should produce low-level crisp, clean audio in the headphones.

Phase-lock v.c.o. unit

The alignment instructions for the phase-lock v.c.o. unit assume that the regulator have been assembled in the screening box, and the 1.e.d. indicator D_{29} connected to C_{203} and C_{204}. All inerconnections should be made, and supply and switching terminal posts
wired to the appropriate box via $1,000 \mathrm{pF}$ feed-through capacitors. Measure the output voltage of the MC7805 regulato and ensure that this is 5.0 V .
With a soldered link, short circuit TP on the v.c.o. p.c.b. to the groundplane in
order to disable the oscillator Tr_{3}. Ap ply the signal generator output to TP_{2} and connect the valve-voltmeter probe to "RF out" terminal post. Set the signal generator to 134.3 MHz and adjust the Transfer the valve-voltmeter probe to v.C.O. out" terminal post and adjust core of L_{23} for maximum r.f. output. Wire an external single-pole two-way switch S_{2} to C_{169} and C_{170} and +12 V
terminal posts. With a two turn link, couple the absorption wavemeter to L_{2} and set wavemeter to 62.5 MHz . Set
external switch S_{2} to the position that will connect XL_{5} into circuit, and adjust Sore of L_{25} for maximum r.f. output. Set S_{2} to connect XL_{6} into circuit, and with
the wavemeter set to 63.0 MHz ensure that the circuit is oscillating a approximately the same amplitude Switch back and forth a number of first time - it may be necessary irst time - it may be necessary to
slightly re-adjust the core of L_{25}. With XL_{5} oscillating and wavemeter set to 125 MHz , couple the two-turn link to L_{26} and adjust core of L_{26} for maximum output. Set the wavemeter to 126 MHz
switch to XL_{6} and ensure that the r.f. output is approximately equal to 125 MHz . If necessary, slightly readjust he core of L_{26}.
Connect the d.f.m. to test point TP_{3} and with trimmers C_{171} and C_{172} trim required frequencies $125,000 \mathrm{kHz}$ and $126,000 \mathrm{kHz}$. Note that crystals for amateur use are normally supplied to a requency tolerance of $\pm 0.005 \%$ and it may not be possible to pull XL_{5} and XL_{6}
completely on to the required frequency. Finally operate S_{2} a number fimes, and ensure that both crystals operate without hesitation and without frequency jumping. Remove the d.f.m. $9,300 \mathrm{kHz}$ to test point' TP_{4} and the valve-voltmeter probe to "I.F. out" Adjust cores of L_{28} and L_{29} for maximum r.f. outpu

Set the AVO to the 10 V d.c. range, reading which should be and observe the short-circuit link from TP and the AVO should now read 0.85 V . With the external switch S_{2}, select the 125 MHz crystal and connect the signal generator, on 9.3 MHz and 500 mV r.f. output, to "V.F.O. in". Screw the core of L_{21}
completely into the winding. The AVO will now read 4.9 V . Slowly unscrew the core of L_{21} until the AVO indication drops from 4.9 V to 2.9 V . At this point now locked $1 . e . d$. will light. The loop is now locked.
select the 126 MH ernal switch S_{2} to should now 126 MHz crystal. The AVO should remain lit. Select the 125 MHz crystal and tune the signal generator to with the The AVO should now read 1.6 V 126 MHz crystal and the AVO should read 2.9 V with the l.e.d. illuminated. crystal selected that with the 126 MHz generator) input of 93 MHz . (signal control voltage is 4.5 V falling to 2.9 V with a v.f.o. input of 8.3 MHz . Swing the signal generator across the 1 MHz tuning range and the control voltage, will follow in step, within the above
limits. Select the 125 MHz crystal and repeat. The control voltage will follow in step within the limits of 2.9 V to 1.6 V . As a final check of reliable phase-lock loop operation, short circuit the "I.F. in" should cause the AVO reading to

IRELESS WORLD, JANUARY 1980

llumine to 4.9 V and the l.e.d. to cease lumination - loop unlocked Immediately the short circuit is
removed, the AVO should revert to its riginal reading and the led should illuminate - loop locked. Switch the 2.7 V power supply on and off a number f times, and check that the loop always ocks reliably from switch on, any 8.3 For reliable operationcy
should be not less than 500 mV . input The i.f. input at "I.F. in" will only appear when the loop is locked, and this, mea sured with the valve-voltmeter diode m.s., depending on the v.c.o. operating equency (133.3 to 135.3 MHz). Note that it is important that the v.f.o. input drives Tr_{39} and the i.f. input drives Tr_{40} as shown. If these input connec-
tions are reversed the MC4044P phase detector will be disabled and the loop will not lock.
V.c.o. amplifier unit

Connect the signal generator set to 134.3 MHz to "V.C.O. in", and the valvevoltmeter probe to "Out RX Adjust cores of L_{30} and L_{33} to obtain voltmeter probe to "Out TX" and check that both readings are approximately the same. The measured output should be in the range 500 to 700 mV r.m.s.

V.f.o. unit

hese alignment instructions assume that a 100:1 ratio gear drive is being
used (i.e. $50: 1$ for 180 degrees rotation C_{222}) and that 40 turns of the tunin knob will change the v.f.o. by $1,000 \mathrm{kHz}$ equal to 25 kHz per turn.
Fully mesh the vanes of C_{222} and mark the tuning knob two complete turn clockwise. Mark a calibration point on the drum dial and number 0 . This is 0 kHz and is the start of the tuning drum scale. Now turn the tuning knob 40 complete turns, mark the calibration 1,000 . This is $1,000 \mathrm{kHz}$ and is the end of Unscrew the conge.
Unscrew the cores of L_{33} and L_{34} so hat they are outside the windings Tr_{46} and Tr_{47}. Connect the "V.F.O. out" terminal to the d.f.m. and with the dial at 0 kHz adjust the dust core of L_{32} for an output frequency of $8,300 \mathrm{kHz}$. Turn the drum dial to $1,000 \mathrm{kHz}$ and adjust C_{220} interact with each other, and must be epeated until the d.f.m. readout is correct at each end of the tuning range. Once this has been achieved the drum main divisions, and every 25 kHz for ntermediate divisions. Finally the tuning knob circumference is divided to 25 equal sections and numbered 0 overy 1 kHz .
Disconnect the d.f.m. and replace

Transceiver with top chassis rail removed to show detail of the s.s.b. generator p.c.b.

Top view of the transceiver showing, left to right, the s.s.b. generator p.c.b., the transmit-converter p.c.b. with screening box, the reduction drive gear box and v.f.f o
assembly, and the power amplifier screening box and the power amplifier screening box
with the valve-voltmeter probe and measure the r.f. output at $8,300 \mathrm{kHz}$ and $9,300 \mathrm{kHz}$. The two readings should be 0.9 to 1 V and equal and in the range the v.f.o. output to $9,300 \mathrm{kHz}$ and screw in the cores of the low-pass filter L_{33} and L_{34} equally until the valve-voltmeter reading just begins to reduce. At this Alignment has been underta one turn. out any biasing potential on When in normal operation with R_{190} connected to the "Calibrate" control, the mean potential on D_{31} will be about 2 V and
approximately 10 pF . The v.f.o. can be brought back to correct calibration by re-adjusting C_{220}
Receiver converter unit
Because a second signal generator is required for the heterodyning input
$(133.3$ to 135.3 MHz) to the receiver converter unit and the the receiver converter unit, it is the transmitter contage to complete this stage an advaninstalling and wiring all units and panel controls in the main chassis - with the exception of the power amplifier. Connect the valve-voltmeter probe to
the input level is 500 to 700 mV r.m.s. Set slider of R_{21} to mid position, and tuning
dial to 144.9 MHz . Couple 100 mV output from signal generator via a two turn tuning knob until a 1.5 kHz tone can be heard from the loudspeaker. Adjust cores of L_{40} and L_{41} for maximum S meter reading. Transfer the link to L_{38} $\underset{S}{\text { and adjust } \mathrm{C}_{249} \text { and } \mathrm{C}_{24} \text { for maximum }}$ 5 -meter reading. Couple the signal
generator to the aerial input socket and adjust C_{242} and C_{237} for maximum meter reading. As each circuit is brought into resonance reduce the signal generator output to aver.
lowing stages.
Re-set R_{211} as necessary to give equal voltages at source connection of Tr_{51} and Tr_{52}.

Transmit converter unit
Fit a TO-5 clip-on heat sink to Tr_{56} and creening can of L_{52}. Check that the emitter potential is 0.15 V indicating a collector current of 15 mA . This is not
critical and can be in the range 10 to critical and can be in the range 10 to
20 mA . If outside these limits it will be necessary to withdraw the p.c.b. and adjust the value of R_{224}.
Set the transceiver tuning dial to 145 MHz . Connect the valve-voltmeter
probe to "HET in", and check that the probe tovel is in the range 500 to 700 mV r.m.s. Set the slider of R_{216} to mid posiion. Connect 750 hm dummy load to "RF out" via two feet of coaxial cable, with the valve-voltmeter probe in
parallel with the $750 h m$ load. Set the dust cores of L_{49} and L_{52} so that each core is just level with the top of the screening can. Connect the signa generator, set to " 145 MHz , to test point TP_{6}. Operate the "press-to-talk" switch C_{282} for maximum output. Unscrew cores of $\mathrm{L}_{48}, \mathrm{~L}_{47}$ and L_{46} for maximum adjust $\mathrm{C}_{276}, \mathrm{C}_{277}, \mathrm{C}_{288}$ and C_{288} for any mprovement in output. Transfer signal cores of L_{48}, L_{47} and L_{46} for maximum output.
the test point TP_{5}. Connect the audio signal generator to the input socket on the front panel, via a 40dB
attenuator (1 megohm series arm, 1 k attenuator (1 megohm series arm, 1 k -
ohm shunt arm). Set the audio generator to 1.5 kHz , operate "press-to-talk" switch and advance the audio output to drive the converter until the valvevoltmeter just begins to show a reading. output. As the circuits are brought into resonance reduce the audio drive to ensure that the following stages are not overloaded.
Finally adjust R_{216} for equal Tr_{53} and Tr_{54} source voltage.

Power amplifier

On the power amplifier, first check that the damping resistors R_{230} and R_{233} have the damping resistors ${ }_{230}$ and $\mathrm{R}_{233}{ }^{233}$ have of Tr_{58} and Tr_{59}. Unsolder the link bet${ }^{\text {ween }} \mathrm{C}_{288}$ and C_{289} and replace with Connect the +12.7 V supply to the Connect the +12.7 V supply to the
+12 V terminal. Adjust value of R_{227} to obtain Tr_{57} collector current of 10 mA . Reconnect the link between C_{288} and
${ }^{2}$ Unsolder the link between C_{303} and C_{314} Connect stabilised 20 V supply to ${ }^{\mathrm{C}_{303}}$ with the milliameter in series and ${ }_{\text {adjust }}$ value of R_{229} to obtain Tr_{58} collector current of 40 mA
Connect a 20 V supply to the +20 V terminal with the milliameter in series. Adjust value of R_{232} to obtain Tr_{59} col-
lector current of 90 mA . Reconnect the link between C_{33} and C_{314}.
Assemble the amplifier in the die-cast screening box, install in the main
chassis, and complete all connections. Connect a 750 hm dummy load via a two foot length of coaxial cable to the junction of L_{66} and C_{312}, with the valvevoltmeter diode probe in parallel with
the 750 hm load. Wire a suitable am the 750 hm load. Wire a suitable am-
meter in series with the 20 V supply. Couple a 1.5 kHz audio tone into the "MIC" socket via a 40dB attenuator. Set the output of the audio generator to
zero and operate the "press-to-talk" zero and operate the "press-to-talk switch. Tr_{58} and Tr_{59} should be drawing
the combined quiescent collector cur the combined

S.s.b. generator unit a.g.c. performance				
Signal Input		A.g.c. Line	Audio Output relative that at $10 \mu \mathrm{~V}$ signal	
$\mu \mathrm{V}$	dB relative	(volts)		
0	$1 \mu \mathrm{~V}$	55		
10	20dB	4.4	20	OdB
100	40dB	3.9	27	$+3 \mathrm{~dB}$
1,000	60 dB	3.5	30	$+3.5 \mathrm{~dB}$
10,000	80 dB	3.2	33	+4dB
100,000	100dB	2.9	35	+5dB

[^2]5. R., Set at mid position 1110 ohms).
It will be noted that the change in audio output is within $2 d B$ for a change in i.f. input of 60 dB
and within 5 dB for a change in i.f. input of 80 dB . This represents very acceptable receiver i.f
\qquad capacitors for maximum r.f. output because they are all sensitive to the power level at which the associated transisto is running.
plug the microphone into its socket plug the microphone into its socket. full output reading on the valvevoltmeter, and at the same time reduce the microphone amplifier gain with R_{25}
(on the s.s.b. generator p.c.b.) until the power output just begins to drop. At full output (single tone) expect a reading on the valve-voltmeter of 30 to 35 V r.m.s. across a 75 -ohm dummy load.
Set the "MODE" switch to the "FM" position, and adjust $R_{\text {poi }}$ (on the f.m. generator p.c.b.) until the power output just begins to drop.
Note that the continuous power output capability is limited by the available operation it is a wise precaution to use a 20 V power supply with an indicator ammeter. This enables the collector current of the power transistors Tr_{58} If at any time the (zero signal) standing current starts to rise, it means that the transistors are being overdriven and denotes the onset of thermal runaway, (i.e., the dissipation is exceeding the
capability of the heat sinking). Switch off immediately to allow the transistors to cool. Adjust the i.f. gain controls R_{2} (s.s.b.) and R_{101} (f.m.) as appropriate to give some reduction to Tr_{58} and Tr_{59} power levels.

Dust core locking

It is most important that all the dust cores are an interference fit in the former and will hold their setting, and firmly but must not become solid, in case re-adjustment should be necessary at some future date. Before commencing alignment it is recommended that the screwed threads of each core and
former are smeared with zinc ointment (obtainable from any chemist). The author has used this method for many years without any problems.

Operating notes

It is worth noting that the transmit it is worth noting that the transmit

WRELESS WORLD, JANUARY 1980
c.w. carrier and the frequency modula-
tion on the final 144 to 146 MHz signal is derived from the v.f.o Deviation is controlled by the microphone amplifier gain control potentiometer R_{117} (on the f.m. generator p.c.b.), and, in the ab-
sence of a deviation meter sence of a deviation meter, this can be
set to accepted amateur band requirements by "on-the-air" reports. The "CALIBRATE" control - nominally set at the mid position - will provide the required reference bias of 2 volts for the varicap diode in the v.f.o. unit.
For a final check on s.s.b. carrier put socket to a 750 hm dummy load with the diode probe of the valve-voltmeter in parallel across the load. Set the valve-voltmeter to the 1.5 volt range socket. Operate the "press-to-talk switch, and if there is a reading on the valve-voltmeter this denotes carrier leakage. Carefully re-balance the trans mit modulator on the s.s.b. generator p.c.b. by adjusting R_{11} and C_{18} in step, voltmeter.
For the c.w. operator, transmission is onveniently effected by keying an outboard transistorised 1 kHz audio
socket.
Both the receiver converter unit, and he transmitter power amplifier will work equally well into a 50 ohm aeria system.

Modifications

"on-the-air" of more than two years tions have been incorporated to improve the s.s.b. operating con venience. These are as follows

1. Wire a $10 \mu \mathrm{~F} 10 \mathrm{~V}$ capacitor across the end pins of R_{2} on the printed circuit side the gate 2 potential of Tr_{1} and Tr_{2} and prevents the transmission of a small "splash" of carrier caused by the switching transient when relay RL_{1} mit", ${ }^{\text {2. Relay } R_{2} \text { has a spare set of contacts }}$ which can be used to speed up the receiver a.g.c. recovery time, for those operators who like fast "break-in' chassis earth and the by-pass contact (pin 13) to chassis earth via a $47 \mu \mathrm{~F} 25 \mathrm{~V}$ capacitor. With a length of PVCcovered connecting wire routed along nect pin 13 chassis rear apron, connect pin 13 to gate 2 of the a.g.c.
amplifier Tr_{17} (junction of R_{71} and R_{72} on the etched side of the p.c.b.) This
modification shorts down Tr modification shorts down Tr_{17} 's gate-2 potential to zero when transmitting, and prevents the switching transient into the a.g.c. system at high level.

Conclusion

This transceiver has been designed to provide a high level of performance
on both transmit and receive, together with a high standard of reliability and For the $f m$ oply For the f.m.-only operator, construc tion can be greatly simplified by omit
ting the s.s.b. generator unit. Repeate operation on any channel in the 145 to 146 MHz section of the band can be provided by installing two crystals
300 kHz apart, in the phase-lock unit. (That is, 63.0 MHz and 62.7 MHz giving heterodyne frequencies of 126.0 MHz and 125.4 MHz .) The switching lines can be taken to a spare set of contacts on the change-over relay RL_{2}, so that
126.0 MHz is selected on "receive" and 126.0 MHz is selected on "receive" and
125.4 MHz on "transmit" for normal epeater operation. If reverse repeater peration is also required, it is only necessary to add a panel-operated, 2pole 2 -way switch and wire this so that he crystal switching lines can be

Because there is ample information in extbooks and other literature on stabilized power supplies, detailed conStructional details have not been given corporate simple series stabilization using BDY20 transistors with the usual BC108 and BZY88 reference diode, and have proved to be entirely satisfactory. strongly advised to use - with the exception of the surplus S.T.C. 445 -LQU 901B FM filter specified - only first class new guaranteed components and

Notes on Part 3. Component suffixes for L_{1} to L_{14} in Fig. 11 are incorrect and should read respectively: $53 ; 54,55,60,57,56,59,62,61,58,63,64,65$ and 66 are C_{228} in line four of p 78 should
read C_{28}. Fourth line of last columm on p 79 should read "...die.cast box are mounter at either end of the chassis platform, and the squelch unit is mounted vertically vertically
 Component suffixes for C_{50} to C_{55} in Figig .17 are incorrect and should read respectively: 200,200 ,
203, 204 and 193 . A table of d.c. voltage checks for this transceiver will be made available on
request.

Books Received

Manual of Avionics, by Brian Kendal, is said
by the publishers to enable the layman to acquire a working knowledge of radio
navaids navais,
detailed analysis of electronics in civil avia tion for the professional reader. The eathor,
however, maintains that he has steered however, maintains that he has steered a
middle course between the elementary and the mathematical analysis.
The book is certainly of interest to the
layman, and is writen at this level : it will layman,
probably not be of great help to the professional for the reasons given in the author's introduction - it is simply not possible to perform both tasks in one book. At the
layman's level, it is extremely detailed, comprehensive and authoritative, if one bears in mind that the 'avionics' of the title is restricted to communications and navigational
aids, including radar.
A short historical chapter, which manages to cover everything from Clerk Maxwell to cavity magnetrons in 26 pages, is followed by seven chapters on air traffic management,
radio telephony and direction-finding, short-
range navaids and radio landing systems range navaids and radio landing systems,
radar, and the hyperbolic systems and Doppler navigation.

For anyone interested in gaining a fairly
superficial (in professional terms) idea of the
control and navigation of civil aircraft, the control and navigation of civil aircraft, the
book can be highly recommended for its
comp comprehensiveness and authority - the
author is Senior Air Traffic Engineer of the Civil Aviation Authority. It is published by
Granada Publishing, PO Box 9 , Frogmore, Albans, Herts. at $£ 10$.
A Window in the Sky, by A. T. Lawton, is
concerned with the possibilities opened up concerned with the possibilities opened up
for astronomers by the use of equipment for astronomers by the use of equipment
outside our atmosphere. In contrast to many works on astronomy, the book is not only
immensely detailed and factual it is good read.' Mr Lawton futs the case for extra-terrestrial instruments, discusses the examines several putting them there and
When When all the equipmestrbie is in places in there is
then the problem of what then the problem of what to investigate and, circuits and optical the physics of integrated rest of the book is a survey of some of the athers only guessed ane already known and others only guessed at. The book is publish
in hardback by David and Charles, Brun
House, Newton Abbot,

Astables: Logic gate circuits

by Peter Williams, Ph.D. Paisley College of Technology

THEORY

- Both gates must enter their linear region for the loop gain to reach a small range of input voltages centred on $\mathrm{V}_{\mathrm{s}} / 2$ the analysis is sim to asmal range of input voltages centred on $V_{s} / 2$ the analysis is simple.
For low-gain inverters both the waveforms and frequencies are less
precise precise. It is assumed that input conduction is avoided (or minimized) as shown.
Under t
 $+V_{s}=3 V_{s} / 2$. At that instant the other end of the resistor is taken

$$
t_{2}-t_{1}=\tau \log _{0} 3 \approx 1.1 \tau
$$

The second part of the cycle has the differentiator input driven to The second part of the cycle has the differentiator input driven to
$V_{s} / 2-V_{s}=-V_{s} / 2$ while the other end of the resistor rises to V_{s}.
Hence $V_{1}=3 V_{s} / 2, V_{2}=V_{s} / 2$ giving an identical time interval

$$
\text { Hence } T=2 \tau \log _{3} 3=2.2 \tau
$$

If the circuit is interpreted as a phase-shift circuit using analysis as for
sinesord sinusoidal response, invalid results are obtained
The modified form of the circuit has an inverter with a voltage-gain
$\gg 1$. Hence its output is saturated for most of the timing cycle, and though type V in structure, a modified analysis is required. Again the
 driven to $3 \mathrm{~V}_{\mathrm{s}} / 2$ and $-\mathrm{V}_{\mathrm{s}} / 2$ on the transitions. $T \approx 2.2 \tau$
Second-order effects are important at high frequencies where gate delays modify the response. In each case an additional large value resistor should be added in series with any gate /inverter input subjec
to voltage steps going outside the suply
-
The Schist-order response is identical with that of the previous circuit.
Trigger is assumed to have upper and lower threshild voltages V_{U} and V_{L}. The time for the rising ramp is

$$
\begin{aligned}
& \left.\left.\mathrm{t}_{2}-\mathrm{t}_{1}=\tau \log _{\mathrm{e}} \left\lvert\, \frac{\mathrm{V}_{2}}{V_{1}}\right.\right]=\tau \log _{\mathrm{e}} \left\lvert\, \frac{\mathrm{V}_{\mathrm{s}}-V_{\mathrm{l}}}{\mathrm{~V}_{\mathrm{s}}-\mathrm{V}_{u}}\right.\right\rfloor \\
& \text { and for the falling ramp } \tau \log _{\mathrm{e}}\left|\frac{-v_{u}}{-V_{L}}\right|
\end{aligned}
$$

The period is $T=\tau \log _{e}\left(\frac{V_{s}-V_{t}}{V_{s}-V_{u}}\right)+\log _{e}\left(\frac{V_{u}}{V_{t}}\right)$

$$
\therefore T=\tau \log _{o}\left|\frac{N_{s}-V_{\mathrm{L}} V_{U}}{\left.N_{s}-V_{U}\right) V_{L}}\right|=\tau \log _{e}\left[\frac{\frac{V_{s}}{V_{L}}-1}{\frac{V_{s}}{V_{U}-1}}\right]
$$

But for symmetrically placed thresholds

$$
\begin{gathered}
\frac{V_{u}+V_{L}}{2}=\frac{V_{s}}{2} \\
T=\tau \log _{e}\left[\frac{\frac{V_{u}+V_{L}}{V_{L}}-1}{\frac{V_{u}+V_{L}}{V_{u}}-1}\right]=\tau \log _{e}\left(\frac{V_{u}}{V_{L}}\right)^{2}=2 \tau \log _{e}\left(\frac{V_{u}}{V_{L}}\right)
\end{gathered}
$$

EXAMPLES

1. The c.m.o.s. astable has $R=100 \mathrm{k} \Omega$ and is required to oscillate at suitable value of capacitance stating eng to avoid conduction choose a suitable value of capacitance stating any assumptions.
The threshold of c.m.o.s. inverters is normally within the range 45
to $55 \% \mathrm{~V}_{\mathrm{s}}$. It is convenient to take the threshold as $\mathrm{V}_{\mathrm{s}} / 2$.
$\frac{-V_{s}}{2}=\tau \log _{e} 3=1.1 \tau$

$$
\text { Period }=2.2 \tau=100 \cdot 10^{-6}
$$

$$
\mathrm{C}=\frac{100 \times 10^{-6}}{2.2 \times 10^{5}}=470 \mathrm{pF}
$$

To check the effect of the variable threshold, assume each inverter switches at $0.45 \mathrm{~V}_{\mathrm{s}}$.
$v_{1}=v_{s}+0.45 v_{s}$
$\mathrm{V}_{2}=0.45 \mathrm{~V}_{\mathrm{s}}$
$=$ rloge $\left(\frac{1.45}{0.45}\right)=1.1$

The second part of the oycle has
$\mathrm{V}_{\mathrm{I}^{\prime}}=-1.55 \mathrm{v}_{\mathrm{s}}$
Second time interval $=\tau \log _{e}\left(\frac{1.55}{0.55}\right)=1.036 \tau \quad \therefore T=2.206 \tau$
This compares with a value of 2.197 for the symmetrical case if
$\log _{3} 3$ is evaluated more accurately i.e. on changing the threshold by 5% of supply (or 10% of its inatialy i.e. on changing the threshold by 5rom $1: 1$ to $1: 1.12 \mathrm{a}$ change of 13%, though the frequency changes by only 0.4%.
upper and lower thresholructed with a c.m.o.s. Schmitt circuit having Estimate the frequency of oscillation with an RC section of 10 V $\tau=500 \mu \mathrm{~s}$.
$\begin{aligned} T & =\tau\left|\log _{e}\left(\frac{V_{1}}{V_{2}}\right)+\log _{e}\left(\frac{V_{1}^{\prime}}{V_{2}^{\prime}}\right)\right| \\ & =\tau\left|\log _{e}\left(\frac{V_{s}-V_{u}}{V_{s}-V_{u}}\right)+\log _{e}\left(\frac{-V_{u}}{-V_{1}}\right)\right|\end{aligned}$

$=\tau\left|\log _{\sigma} \frac{\left(V_{s}-V_{i}\right) V_{U}}{\left(V_{s}-V_{u}\right) V_{t}}\right|$
$\mathrm{T}_{1}=1.47 \mathrm{~T}_{\mathrm{t}} \mathrm{f}=1.36 \mathrm{kHz}$
For symmetrically placed thresholds but with the same hysteresis of
3.5 V
.5V,
$V_{\mathrm{L}}^{\prime}=5-1.75=3.25 \quad \mathrm{~T}^{\prime}=2 \pi \log _{\mathrm{e}}\left(\frac{\mathrm{V}_{\mathrm{U}}}{\mathrm{V}_{\mathrm{L}}}\right)=1.46 \tau$
Mhis result can be obtained from the general case above by substitution
as in the analysis opposite.

Circuit Ideas continued

Amplitude modulator

With a 555 connected in the astable mode the timing capacitor charges and $V_{L}=V_{\text {arges }} 3$ By simultaneously in creasing or decreasing V_{H} to V_{L} sym metrically about $V_{\mathrm{cc}} / 2$, amplitude
modulation can be achieved. Resistor R_{x} is a compromise between excessive
drop under d.c. conditions and loading of op-amp A_{1}.
A. D. Teckchandan

Faridabad
India

Simple waveform generator

For audio frequencies this waveform generator offers several advantages
over the usual Wien bridge circuit. No over the usual wien briage circuit. No
amplitude stabilization is required, there are no spasmodic interruptions to the output when switching range, and a range of $10-1$ is easily achieved with standard twin-gang potentiometer. follower and the Schmitt trigger $\mathrm{Tr}_{4} \mathrm{Tr}_{5}$ produce a triangular waveform at the collector of Tr_{2}. This output is of con-
tant amplitude throughout the requency range due to fixed triggering points. The triangular waveform also produces a good sine wave of constant amplitude. The audio range is easily covered by three pairs of capacitors and tively to a single emitter follower.
F. V. Goodfellow

Southampton

Long duration timer

The two oscillators constructed from a 556 have periods $\mathrm{T}_{1}+\mathrm{t}_{1}$ and $\mathrm{T}_{2}+\mathrm{t}_{2}$, where the outputs of the oscillators are
high during T_{1} and T_{2} and low during t_{1} and t_{2}. Also, t_{1} is much smaller than T_{1} and t_{2} is much smaller than T_{2}, but T_{1}
and T_{2} are almost, but not quite, equal. When the supply is connected the oscillators start simultaneously and there is a long duration before the low periods of the oscillators overlap. When this occurs a short low pulse is produced
by the 7400 . The maximum interval by the 7400 . The maximum interval
between the pulses can be estimated as follows. Let $t_{1}=t_{2}=t$ and let $T_{2}=T_{1}+t$.

It then takes $\mathrm{T}_{1} / \mathrm{t}$ periods of the slow oscillator to overlap at the low duration Therefore, the time delay $\mathrm{T}^{\text {is }} \mathrm{T}_{1} \mathrm{~T}_{2} / \mathrm{t}$ and $50 \mu \mathrm{~s}$ and $\mathrm{T}_{1} \mathrm{~T}_{2}$ is 18 min , T is 778 years. In the practical circuit with a 556 or two 555 s , such long periods are not possible because the well known current spike, caused when the output of a ass goes low state before its high period has been completed. However, the new 355 timer should produce better results.
O. B. Hellman

Turku
mancmen

Power supply and ni-cad charger Producing an output of 13.8 V d.c.
at 750 mA for a mateur radio transceiver operation and a transceiver operation and a
second output at 45mA, constant
current for recharging nickelcurrent, for recharging nickel-
cadmium batteries, the Lar cadmium batteries, the La
Modules PS1200, permits trans\square

mission from the base station mission from the base station
while recharging is taking place. The transceiver output supply is regulated and all switching is
automatic. Protection circuit automatic. Protection circuits
are included and output 2 (charger) is at negative ground.
LAP Modules Ltd, 27 Cookridge LAP Modules Ltd,
St, Leeds, LS2 3AG.
WW 306
R.f.i, sealing paste Described as "extremely fine in texture, consisting of a high con centration of pure silver particle in silicone resin" by the makers,
Emerson and Cumming (UK) Ltd, Eccoshield SX is a conduc tive, non-hardening sealant and
gasketing material for use as an gasketing material for use as an
r.f. shield. Volume resistivity of the paste is less than $0.005-\mathrm{xcm}$ and it can be used at temperatures from $-70^{\circ} \mathrm{F}$ to $+400^{\circ} \mathrm{F}$
$\left(-56^{\circ} \mathrm{C}\right.$ to $\left.+204^{\circ} \mathrm{C}\right)$ with no ad verse effects. The paste's consistency can be changed by thinning
with toluene and the manufac with toluene and the manufac
turer quotes its use on cove plates of conduit junction boxes, to replace knitted metal gaskets and on bolt threads where it ca
help to assure continuous elechelp to assure contict
trical contact and to prevent corrosion. The claim is also made
that structures sealed with that structures sealed
Eccoshield have a measured Eccoshield have a measured
insertion loss in excess of 100 dB insertion loss in excess of 100dB
for both electric and magnetic
fields in the frequency range 10 kHz to to 10 GHz . Emerson and
Cumming (UK) Ltd, Colville Rd Cumming (U) Ltd.
Acton, London, W3. WW 307

Mains socket

 Mainstester
Cester Constructed in the form of a 13 A
mains plug top, a socket tester
with with a visual display which indi-
cates a variety of fault conditions cates a variety of faultconations
in a domestic mains supply is in a domestic mains supply is
available from Galatrek. The makers say that when the tester is plugged into a socket (any
form, including 5 A or 15 A round form, including 5A or 15A round
pin, these are connected by a
lenth of pin, hese are conected disp ay
lenth of cable) the not
indicates "correct," "live fault," indicates "correct," "live fault,"
"no earth," "live/neutral

reversed," "neutral fault," and costs $£ 4.50$ including v.a.t. and 3 -phase remote tester is also available at $£ 8.95$ inc. v.a.t.
Galatrek, Scotland St, Lanrwst Galatrek, Scotland St, Lanrwst,
Gwynedd, LL26 0AL, North Wales.
$\mathbf{w w} 308$

Tape head

 demagnetizer
Demagnetization of tape heads

 Demagnetization of tape headwithout the need to withdraw the demagnetizing yoke away from
the head at a constant speed is the head at a constantsper its
the claim made by TDK for battery-operated electronic head demagnetizer, type No. HD11.
The defluxing operation co The defluxing operation can be
carried out in 1 s , and the yoke is adjustable to settring of 15° and 30° from the horizontal. The de-
sign of the unit also mas sign of the unit also makes it
possible to carry out defluxing of possible to carry ould den models of
heads on many older
tape recorder son som tape recorder, some of which are
difficult in terms of head access TDK Tape Distributor (UK) Ltd., 11th Floor, Pembroke House, W
Surrey.
Ww 309

Auto transformers A range of transformers intended
for the adaptation of modernized for the adaptation of modernized
equipment which has been imported from the US is now
available from F. H. Radford Ltd. This comprises a series of single
phase auto trester phase auto transformers for
either 240 or 220 V supply this either 240 or 220 V supply, this
input being transformed to 115 V . hy means of a single connection
change. Four basic models are change. Four basic models are
available as 500 . 1000 . avaind
3000 VA units, each of which is equipped with two American 15A 3-pin outlets and a 3-core output
lead. F. H. Radford Ltd. 38 Char lead. St, London W1P 1HP.
lote 310

${ }^{\mathbf{W}} \mathbf{W} \mathbf{~ 3 1 0}$

Mag
 rack

A collapsible frame moulded from polythene and held together
by four by four metal tubes constitutes
the Multi-file magazine storas the Multi-file magazine storage
rack. The frame is designed to rack. The frame is designed to
hold up to 24 issues of a fairly weighty A p publication (such as
Wireless World) although a few Wireless World) although a few
more can be squezed in if reqmore can be squeezed in if req-
uired. Each magazine is fitted uired. Each magazine is
with two clips which pinch at
either end of the either end of the spine, and
located at the centre spread located at the centre spread -
these must be fitted carefully to avoid tearing - and the journal is
thin hung by these polythene then hung by these polythene
clips from the rails at each side of clips from the rails at each side of
the frame. The price, ex works, is the frame. The price, ex works, is
E8.50 each, including v.a.t. or
e3.50 each per unit per 1000 and £3.50 each, per unit per 1000 and
the rack is available in four colours - brown, light grey, blue
ond yellow. Alternative colours and - yellow. Alternative colours
and "house" branding can be
arranged on orders over 5000 at arranged on orders over 5000 at
extra cost. Multi-file Ltd, Sands extra cost. Multi-file Ltd, Sands
Industrial Estate, Hillbottom Rd,
High Wyyombe, Bucks. High Wycombe, Bucks.
WW 311

Long
Applications requiring higher by Bach-Simpson (UK) for its by Bach-Simpson (UK) for its
new range of panel meters fea-

turing a 250° pointer deflection angle. These meters, specified as
2123L for d.c. and 2143L for a.c.
are 2123L for d.c. and 2143L for a.c,
(rectified) are self-shielded, permanent magnet moving-coil in
struments with non-magnetic struments with non-magnetic

Finally, you can have all the advantages of DMMs and none of the disadvantages of analogues Our new 169 is a tough, lightweight,
battery-powered digital multimeter for use in the field or respectable. 25% DC accuracy. 5 -function DMM with

Its low-parts-count, high
Its low-parts-count, high-efficiency design keeps power consumption to a minimum for longer componen

All 5 functions are fully protected -1400 V peak on DCV and $\mathrm{ACV}, 300 \mathrm{~V}$ on Ω,

Is this the end for Analogue

 $2 \mathrm{~A}(250 \mathrm{~V})$ on DCA and ACA. The fuse externally accessible for quick replacemen 169 will stand up to stress-testing assures the 169 will stand up to all the mechanical shock and abuse normally associated with tough cations.When you actor in featu
display, auto-zero, auto polarity, 60% larger display range annunciation right on the than other DMMs and the easy-to-read, colour coded front panel, we think you'll get the point No analogue meter or DMM can match the price performance of the new 169. It costs $£ 99$ (plus VAT)

For information on the 169 or any Keithley DMM call (0734) 861287
Telex: 847047

Ex stock
WW - 059 FOR FURTHER DETAIIS

KEITHIEY
Koithley instruments Ltd.

1. Boulton Road
GB-Reading, Berkshire RG2 ONL GB-Reading, Berkshice RG2 ONL
UNTEE KNGDOM
(0734) 861287 Telex: (851) 847047 Keithley Instruments GmbH Heigihofstrasse 5
$0-8000$ München 70 (089) 714-40-65
Telex: 5212160

Keithley Instruments SARL 44, Rue Anatole France f-91121 Palaiseau Cedex
01-014.22-06.
Telex: $(842) 204188$
$\%$

WHOLESALE

ELECTRONIC COMPONENTS

	Stock	Price
AU113	120	. 98
3k-Presets	2,000	. 01
TBA800	500	. 44
4700μ F 16v Elec.	800	. 14
7448 TTL	1,600	. 20
16-Pin DIL Socket	5,000	. 08
Z-80 P10 4MHz	30	6.50
2708 EPROM	500	4.39
2114 SRAM	800	3.51
4116 DRAM	800	4.50
And many more. Companies invited to send SAE for our up-todate price list.		
Please phone for availab include 15\% VAT. Postag	orderi	

STRUTT
 ELECTRICAL AND MECHANICAL ENGINEERIIM

 EIECTTRICAL COMPONENT3c bapley market st ${ }^{\text {TAVVISTOCK }}$ DEVON PLI 05 OF Tel. TAVISTOCK (0822) 5439 Tel. TAVISTOCI
Telex: 45263

The $\mathbf{7 2 0 8} \mathbf{6 0 0}$ MHz Mini Counter

the quality low cost counter

FEATURES

 Built-in VFF-UHF Preamp Completely Portable with Rechargeable an and Batteries (Optional).

(1) SNewBear Components (i)

CALLERS AND MAIL ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505

CALLERS ONLY: 220-222 Stockport Road, Cheadle Heath, Stockport Tel: 0614912290
SEND FOR OUR NOVEMBER CATALOGUE AND BOOK LIST.
wW - 009 FOR FURTHER DETAILS

NRDC-AMBISONIC UHJ

SURROUND SOUND DECODER

 Complete kit, including licence fee $£ \mathbf{4 9 . 5 0}+$ VAT or ready built and tested $\mathbf{£ 6 7 . 5 0 + \text { VAT }}$

NEW S5050A STEREO AMP

50 watts rms-channel. 0.015% THD. $\mathrm{S} / \mathrm{N} 90 \mathrm{~dB}$, Mags $/ \mathrm{n} 80 \mathrm{~dB}$.
Tone cancel switch. 2 tape monitor switches Metal case-comprehensive heatsinks
Complete kit only £63.90 + VAT.

INTRUDER 1 Mk. 2 RADAR ALARM
 With Home Office Type epproval

The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along The original "Wirfless World"" published Intruder 1 has been re-designed by integrex to incorporate several aety 40 seco
with improved performance. The iki is even easier to build. The internal addible alarm turns off atter approximately with improved performance.
the unit re-arms. $240 V$ ac
Complete
kit $£ 49.50$ plus VAT.

Wireless World Dolby noise reducer

rrademark of Dolby Laboratories Inc.

switching (
switching for both encoding (low-level h.f. compression) and decod
a switchable f.m. stereom utliplox and bias filter.
provisision for decoding Dolby f.m. radio transmissions (as in USA).
no equipment needed for alignmen ssette tape machines.

Also available ready built and tested

Typical performance
 Harmonic distortion 0.1% at Dolby level typically
0.05% over most of band, rising to a maximum of

Signalto-nise ratio. $75 \mathrm{SB}(20 \mathrm{~Hz}$ at Doltb levell) at Monitor output

Dynamic Range >90db Complete Kit PRICE: $£ 43.90$ + VAT

Single channel plug-in Dolby (${ }^{(16)}$ PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts and all components
Please add VAT @ 15\%
We guarantee full after-sales technicai and servicing facilities on all our kits, have
you checked that these services are available from other suppliers?

INTEGREX LTD.

S-2020TA STEREO TUNER / AMPLIFIER KIT
SOLID MAHOGANY CABINET
A high-quality push-button
FM Varicap Stereo Tuner combined with a $24 W$ r.m.s. per channel Stereo
Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction un tc.), THD less than 0.1% at 20 W into 8 ohms. Power on / off FET transient protection. All sockets, fuses, etc are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic if $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @+1.2 \alpha \mathrm{~V}$. THD 0.3%. Pre-decoder 'birdy' filter. PRICeo indicators. Tuning range NELSON-JONES MK. 2 STEREO FM TUNER KIT 59.95 + VAT
 NELSON-JONES MK. I STEREO FM TUNER KIT

```
A very high performance tuner with dual
gate MOSFET RF and Mixer front end,
l
```


 IC stabilized PSU and LED tuning indicators Pushypuctilly 0.4%. unit. Choice of either mono or stereo with a choice of stereo decoders. Compare this spec. with tuners costing twice the price.

STEREO MODULE
A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment The IF on the 3302 FET RF filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo $£ 33.95$ + VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring Power 'on/off' FET transient protection
Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 72 dB . Headphone output. Tape $\ln /$ Out facility (for noise reduction unit, etc.). Toroidal mains transformer PRICE: £35.95 + VAT

BASIC NELSON-JONES TUNER KIT $£ 15.70$ + VAT
$£ 4.47$ + VA $\mathbf{\varepsilon 6 . 0 0}+V A T$ $\mathbf{8 8 . 8 0}+$ VA'T

West Hyde have the greatest range of instrument cases

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz
frequency counter plus option of 0.1 .5 MHz reccive and/or any requency counter plus option of $\mathrm{O}-1$
ransceiving application $1.8-30 \mathrm{MHz}$

RADIO SHACK LTD

For Commun
Trio testgear.

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3A Giro Account No. 588 8151. Telephone: 01.624711
Cabbes: Radio Shack, London, NW6. Tolex: 23718

106
PROBABLY THE MOST INEXPENSIVE QUALITY SIGNAL GENERATOR AVAILABLE TODAY
Audio ARange: 10 OHz -
four swith
fod ranges.
$\substack{\text { Distorion } \\ \text { Extremely } \\ \text { Io }}$

Output
1vinto
and
ivinto 600 , with
Fixed and variable At
Sine and Square Wave.
Based on a Linsley Hood design.
Battery or Mains.

ELEA $\underset{\substack{\text { Tax extra } 55.40 \\ \text { P\&P } 5200}}{\text { (batty }}$ TELERADIO ELECTRONICS 325 FORE STREET, EDMONTON, ONNDON N9 OPE
Closed Thursdays SAE for lists

WW - 020 FOR FURTHER DETAIIS
BUILD YOUR OWM
HICH QUALITY TURNTABLE

Direct drive motor/die cast
turntable pack -
$£ 26.00+£ 3.90$ V.A.T.
including post $\&$ packing
(V.A.T. shown at present rate of 15%)

Further details of these top quality
components in return for s.a.e. - or personal
callers weicome
This offer applies to U.K. \& Northern Ireland
only: ask for quote for export orders.
Symot Limited, 22a, Reading Road, Henley-on-Thames,
Oxfordshire. RG9 1AG. Telephone:(049-12)2663

WIRELESS WORID HANMARY 1980
TR-A으안 A150 MIXER AMPLIFIER
£149.50
150 WATTS SINE WAVE POWER

EURO VHF FM TUNERSET 7252
The long experience of Larsholt Electronics is reflected in this
superbly engineered VHF Band II varicap FM tunermodule. (As superbly engineered VHF Band 1 I
used in the Signalmaster Mk 8.)

The four stage frontend employs dual gate MOSFET transistors
for both RF and Mixer stages, providing the 7252 with a 1 UV for both FF and Mixer stages, providing the 7252 with a 1 uV
sensitivity for $30 \mathrm{~dB} \mathrm{~S} / \mathrm{B}(\mathrm{m})$. The If uses a dual ceramic IF sensitivity for fiter, and provides all usual Mifif functions, of tuning meter
drives, muting, AFC and AGC. THD is only 0.1%. LARSHOLT ELECTRONICS DK 4622

AMBIT INTERNATIONAL
200 North Sevice Road

4. All Idiamond grains ar

- Grain size 200 , thickness $55 / 100 \mathrm{~mm}$. both foces diamonded. For quick cleaning of industriid

 Sole Distributors for the United Kingdom SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556

INTO THE 80'S WITH CATRONICS THLETEX DECODERS!

 $\begin{aligned} & \text { Price only } £ 67 . .92+\text { VAT } \\ & \text { Character Rounding " Post }\end{aligned}=£ 78.80$ total

wW-921 FOR FURTHER DETALLS

Wireless world, January 1980

Simply ahead. .

ILP'S NEW GENERATION OF HIGH

With I.L.P performance standards and quality already so well established any advances in I.L.P. design are bound to be of outstanding importance
and this is exactly what we have achieved in our new generation of modula nits. I.L.P. professiona design principles remain adequate heatsinks, protected sealed circuitry rugged constructio and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercia concentrated on improvements whereby our products will meet even more stringent demands such, for example, as those revealed by vastly mproved pick-ups, tuners, loudspeakers, etc., all of which can prove merciess P. modules are for laboratory and .ither specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

VALUES OF COMPONENTS FOR CONNECTING TO HYS Volume - $10 \mathrm{~K} \Omega$ log.
Bass $/$ Treble $-100 \mathrm{~K} \Omega$ linear. Balance -5 K .

The HY5 pre-amp is compatible with
all I.L.P. amplifiers and P.S.U.'s. It is contained within a single. pack. $50 \times$
$40 \times 15 \mathrm{~mm}$ $40 \times 15 \mathrm{~mm}$. and provides multi-
function equalisation for Magnetic/ Ceramic/Tuner/Mic and Aus TTape)
inputs, all with high overload margins. Active tone control circuits; 500 m
out.
Spectortial strion at $1 \mathrm{Hzz}-0.01 \%$ Special strips are provided for connec
ting external pots and swithening
systems as required systems as required. Two HY5's
connect easily in stereo. With easy to
follow instructions. connect easily in stereo. With easy to
follow instructions.

$$
4.64+74 \mathrm{p} \text { VAT }
$$

THE POWER AMPLIFIERS

Model	$\begin{array}{\|l\|l\|} \hline \text { Output } \\ \text { Power } \\ \text { R.M.S. } \end{array}$	Distortion at 1 KHz	$\begin{array}{\|l\|} \hline \text { Minimum } \\ \text { Signal/ } \\ \text { Noise } \\ \text { Ratio } \\ \hline \end{array}$	Power Supply Voitage	$\begin{aligned} & \text { Size } \\ & \text { in mm } \end{aligned}$	$\begin{aligned} & \text { Weight } \\ & \text { in gms } \end{aligned}$	Price +
HY30	$\begin{array}{\|l\|} \hline 15 \mathrm{~W} \\ \text { into } 8 \Omega \\ \hline \end{array}$	0.02\%	80dB	$-20-0-20$	105×50×25	155	$\begin{aligned} & \mathbf{f 6 . 3 4} \\ & +95 p \end{aligned}$
HY50	30 W into 8Ω	0.02\%	90dB	-25-0 +25	105×50×25	155	$\begin{gathered} £ 7.24 \\ +£ 1.09 \end{gathered}$
HY120	$\begin{array}{\|l\|} \hline 60 \mathrm{~W} \\ \text { into } 8 \Omega \\ \hline \end{array}$	0.01\%	100dB	-35-0.+35	$114 \times 50 \times 85$	575	$\begin{aligned} & £ 15.20 \\ & +£ 2.28 \\ & + \end{aligned}$
HY200	$\begin{array}{\|l\|} \hline 120 \mathrm{~W} \\ \text { into } 8 \Omega \\ \hline \end{array}$	0.01\%	100dB	-45-0. +45	$114 \times 50 \times 85$	575	$\begin{aligned} & \text { £18.44 } \\ & +£ 2.77 \end{aligned}$
HY400	240 W into 4Ω	0.01\%	100dB	$-45-0 \cdot+45$	114x100×85	1.15 Kg	E27.6

input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{~Hz}-3 \mathrm{~dB}$

\qquad

* ALL U.K. ORDERS DESPATCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM Simply fill in order coupon with payment or
credit card instructions. Post to address as below but do not stamp esvelope address a
oostage on all letters sent to us by readers of

ELECTRONICE LTD.
FREEPOST Graham Bell House, Roper Close,
Canterbury, Kent CT2 7 EP.

wW - oc8 FOR FURTHER DETAL

Wireless world. January 1980
Communications 00 Communications Equipment and Systems National Exhibition Cent Birmingham England
15 April - 18 April 1980

AN INVITATION TO Communications 80 , the fifth in a series of international expositions
dealing with the applications of dealing with the applications of systems, particularly in the major growth areas of data and business
communications which are being created by the converging tech5 nologies of computing and telecommunications. The other important themes of the exposition are PTT telecommunications, civil fixed and mobil
radio and emergency communications.

Communications 80 will attract visitors from all over the world (from 69 countries at the last event in 1978) who will be coming to see the latest developments in communications technology displayed by leading international manuractures. Maned by the Institution of Electrical Engineers in association with leading international learned societies, to learn about the latest technica advances in communications equipment and systems.
Communications 80, the world's leading international exposition in the field, is actively supported by the International Telecommunication Union - the world telecommunications authority representing 153 governments; the British government,
through the Home Office; the British Post Office; Cable and Wireless Ltd; and the two main UK trade associations - the Electronic Engineering Association and the Telecommunications Engineering and Manufacturing Association.
Please make a note of the dates and venue
Communications 80 - Tuesday 15 April to Friday 18 April, 1980 at the National Exhibition Centre, Birmingham, England.
You cannot afford not to come if you make, use or specify communications equipment and systems.

Communications 0

Please send me details of exhibition \square conference

Name

Position
Company
Address

[^3]

WIRELESS WORLD AANUAPY 1980
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE
 The Mark III FM Tuner and

internatianal 2 Crresham Rogd, Brentwand,E55EM.

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS
Austraila: Gordon \& Japan Wester Pulica Australia: Gorton \& Japan: Western Publica

 1. Aue de it Petite-1LE

Busselis 7 Canada: Dovis. Ciirculatio | Avenur west, Toionto 19 |
| :--- |
| Ontatio |

4528, Nicosia
Donmarki Dans,
Bladodistribution,

Amsterdam 100

India: International Bool
House, Indian Mercantile

Iran:A.D.A., 151

A.b: Intercontinen

Italy:IItercontinental
s.s.
20124 viveracing Milano
and
Tokko
Loban
Buras
Marad
Hanna
Malay

 $=$
2ne
?
s.enteisiou

5
${ }^{2} 5$ Stiockholm 30


```
business reply service
WIRELESS WORLD,
PRODUCT REPLY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS
```

WW	WW
WW	ww
Ww	ww
ww	ww
ww	
ww	uw
ww	ww
ww.	ww
ww	ww
ww	
WW	WW
ww.	ww
ww	
ww	ww.
ww.	
wW.	ww

space provided.
Name.
Name of Company .
Address.

Telephone Number .

Eubl intrs

Position in Company
Nature of Company/Business
No. of employees at this estabtishment.

WIRELESS WORLD Wireless World, January 1980 WW 061 he appropriate reference numbers of which have been entered in the

Wireless world \square

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

Wireless World Subscription Order Form Wireless World, January 1980 Ww 061

UK subscription rates
1 year: $£ 9.00$ USA \& Canada subscription rates 1 year: $\$ 31.00$
Overseas 1 year: $£ 12.00$
Please enter my subscription to Wireless World for 1 year
I enclose remittance value. IPC BUSINESS PR

Name...

Address

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mis. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6 ,左 37342 Kophone 347051 Telex : 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10 Telephone : (03) $585-0581$

United States of America Ray Barnes, United States of America Ray Barnes New York, NY 10017 - Telephone: (212) 6895961 -Telex:421710 Mr. Jack Farley Jnr., The Farley Co., Suite 1548,35 East Wacker Drive, Chicago, Illinois 60601 - Telephone: (312) 63074

Mr. Victor A Jauch,
Elmatex Internation
P.O. Box 34607
P.O. Box 34607 ,

Los Angeles Calif. 90034 U.S.A.
Telephone: (213) 8218581 Telephone: (213)
Telex: $18-1059$.
Mr. Jack Mentel, The Farley Co., Suite 605 Telephone: (216) 6211919
Mr. Ray, Rickles, Ray Rickles \& Co., P.O. Box 2008, Miami Beach, Florida 33140 - Telephone: (305) 5327301 Mr. Jim Parks, Ray Rickles \& Co., 3116 Maple Drive N. E., Atlanta, Georgia
30305. Telephone: (404) 2377432 30305. Telephone: (404) 237
Mike Loughlin, IPC Business Press, Mike Loughin, IPC Business Press,
15055 Memorials, Ste 119 , Houston, Tex 77079 -Telephone: (713) 7838673

Mr. Colin H. MacCulloch

 International Advertising Consultants Lto 915 Carton Tower, 2 Carton Street, ${ }^{2} 69$WIRELESS WORLD. JANUARY 1980
TRUST SCOPEX

The 14D-15 is the very latest addition to the Scopex range of brilliantly engineered, easy to use oscilloscopes. Here's what it offers:-

- Large screen $10 \mathrm{~cm} \times 8 \mathrm{~cm}$
$2 \mathrm{mV}-10 \mathrm{~V} / \mathrm{DIV}$ sensitivity
3% accuracy - a Scopex speciality
$\mathrm{DC}-15 \mathrm{MHz}$ bandwidth over the entire screen
- Probe test output
- Switched mode power supply Plus a host of well throught-out additional facilities,
free delivery in the UK mainland and a very good price of
Trust Scopex to get it right.

Copex

Pixmore Avenue, Letchworth,
Herts. SG6 1 JJ .
elephone: 0462672771
ww-O29 FOR FURTHER DETAILS

LINSLEY-HOOD CASSETTE RECORDER 1

VEL 910 . Vertical front loading Super Hi-fid deck, as used in our
Cassette Recorder $2 . £ 31.99+$ VAT. Set of knobs $£ 1.46+$ VAT. LENCO CASSETTE MECHANISMS

CASSETTE HEADS

HART ELECTRONICS

LINSLEY HOOD CASSETTE RECORDER 2

BAILEY 30 WATT AMPLIFIER

COME AND SEE US ON STANDS
C9 \& C10 AT BREADBOARD'79

TV TUBE REBUILDING

 Ful training courses are individually taliored to cistsoines | Fun traing |
| :---: |
| reauremens |

For full dealials of ou sericice conhact Neil Unpe
FAIRCREST ENGINEERING LTD. Willis Road, Croydon, CRO2XX
$01-6841422,01-6898741$
WW - O44 FOR FURTHER DETAILS

Tel: 01-6772424 Telex: 946708										
BASES $87 G$ unskited 876 skired B9A unskirted lnt Octal Nuvistor ba 8 pin DIL 14 pin DIL 14 pin DIL Valve screenin cans all sizes										
 Tolephonen 01.677 2424/7 Over $\mathbf{1 0 , 0 0 0}$ types of valves, tubes and semiconductors in stock. Ouotations for any types not listed. S.A.E. Open to collorer Monday. Friday 9 a.... 5 ...m.										

DISPLAY ELECTRONICS

Would like to wish all their customers and business associates a Very Merry Christmas and Prosperous New Year

HI-FI TONE ARM BARGAINS -from Britain's Leading Audio Store.

ALL LEADING MAKES OF H-FI and MANY OTHER ACCESSORY BARGAINSAVAILABLEFROMTHECOMMUNICATIONSCENTRE: 2 YEARS GAR RANTE
WW - 084 FOR FURTHER DETAILS

nogon-janhon

The superb 3.77 is the only choice in compact professional recorders.

Who says?

Hundreds of satisfied professional users - Broadcast authorities, studios, record companies,

universities etc etc
 What makes it the best?

The 3.77 provides more performance and features for your $£$ than any other model. Like 3 speeds, flat metal facia with excellent editing facilities, 100% variable speed control, logic control with motion sensing, line-up oscillator.

1-7 Harewood Avenue, Marylebone Road, London NW1. Tel: 01-724 2497. Telex: 21879 WW - 086 FOR FURTHER DETAILS

ROHDE \& SCHWARZ TV Demodulator. AMF. $55-90 \mathrm{MHz}$ Selective UHF V /Meter. Bands 4 \& 5 . USVF UHF Signal Generator SC Poryskop SWOBI. $£ 450$ Videoskop SWOF with sideband adapter Modulator / Demodulator BN1 7950 /2 Video Test Signal Generator type SPF, UHF Sig. Gen. type SCR. $1-1.9 \mathrm{GHz}$.	P. F. RALFE ELECTRONICS 10 CHAPEL STREET, LONDON, NW1 TEL: 01-723 8753	DC POWER SUPPLIES *APT 10459/8 12-14V. 5 Amps. £25. (+£1 pp).
		pp). *APT Your voltage requirements from 6 V to 36 V . @ 5 Amps. £25. (+£1 pp). "Mullard Dual supplies. Brand new with handbook. Pos \& Neg 12 V at 1 A and 0.4 A resp Dims $9 \times 4 \times 5$ in. £10. (+£1 pp).
MARCONI TF2360R TV Transmitter Sideband Analyser TF1101 RC oscillators $£ 65$. TF1152A/1. Power meter. 25 W . 500 MHz . $£ 75$ TF1020A Power Meter. 100W TF890A/1 RF Test Set. $\mathbf{£ 3 9 5}$ TF675F Pulse Generator: TF1066 AM/FM Signal Generator. $£ 550$. TF $801 \mathrm{~B} / 3 \mathrm{~S}$ Signal Generator $£ 175$.	AIRMEC Display oscilloscope. 4 beam AIRMEC 314 A Voltmeter. 300 mV (FSD) 300 V BRANDENBURG EHT Generator. 50 KV . 1 mA . DERRITRON 1 KW Power Amplifier with control equipment for vibration testing etc. GAUMONT KALEE Flutter Meter GERTSCH Frequency Meter and Dev Meter. $20-1000 \mathrm{MHz}$. £ 350 . HEWLETT PACKARD 302A Wave Analyser	 $7 \times 5 \times$ init. Following range availab:e 5 Volts $@ 3$ Amps. $13-17$ Volts © 3 Sois @ 3 Amps. $13-17$ Volts @ 2 Amps. All the above power supply units are $230 \mathrm{~F} . \mathrm{AC}$ input (excepet LLembda type) and are stabilised and reguluted and fused. All are fully tested before despatch and guaranted in first class order throughout. As with all our equipment. there is a money back guarantee.
BECKMAN TURNS COUNTER DIALS Miniature type (22 mm diam.). Counting up to 15 turn "Helipots." "Brand new with mounting instructions. Oolly $£ 2.50$ each. Wandel \& Gotrerman Equipment	BOONTON Model 80 Sig. Gen. 2 -400 MHz $£ 95$. RACAL type 801 R . 100 mHz Digital Frequency Counter TELETYPE KSR. One remaining. SOLARTRON LM 1420.2. DVM. 6 ranges to 1 KV . MURHEAD type K-134-A Wave Analyser. Portable. RADIOMETER AFM $/ 1.1$ Dev/ Mod Meter. $\mathbf{3} .5-320 \mathrm{MHz}$. $£ 185$.	MODULATION METERS AIRMEC $2103-300 \mathrm{MHz}$. AM / FM. . A . A . FM RACAL $4093-600 \mathrm{MHz}$. AM / FM.
Level Oscillator $0.2-1600 \mathrm{KHz}$ evel Transmitter 0.3-1350KHz Carrier Frequency Level Meter	WEINSHEL Power supply Modulator ty BRUEL \& KJOER type 1504 Deviation BRUEL \& KJOER Vibration equipment	'CENTAUR' INSTRUMENT COOLING FANS
advance constant voltage TRANSFORMERS Input 190-260V AC. Output constant 220 Volts. 250 W . $£ 25$. ($£ 2$ carriage)	BRUEL \& KJOER Microphone amplifier $2603 £ 195$. BRUEL \& KJOER Type 3301 Automatic frequency response MUIRHEAD.PAMETRADA D489EM Wave Analyser	Made by Rotron Holland. These are very high quaity, quiet running fans, specially designed for the cooling of all tyes ment. Measures $4.5 \times 4.5 \times 1.5 \mathrm{in}$. 115 VVC . 11
YE RESISTANCE BOXES 5 decade resistance boxes measuring from 11.111 ohra to 0.001 ohm	TEKTRONIX 515 A Oscilloscope TEKTRONIX 545 main frames. $£ 210$. Choice of plug-in units extra	Also $230 \mathrm{~V} . \mathrm{AC}$ available. $15 \mathrm{~V} . £ 4.50$. (postage 25p). 230 V E5.
LABORATORY OVENS. - Gallenkamp, 3 cu t145. Also Morgan Grundy $1 \mathrm{cu} . \mathrm{ft}$. $£ 55$. 20-WAY JACK SOCKET STRIPS. 3 pole type with two normally closed contacts. $\mathbf{E 2 . 5 0}$ each $(+25 \mathrm{p}$ pp). Type 316 three pole plugs for above - 20p ea. (pp free)	NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry our three months' guarantee. Calibration and certificates can be arranged at cost. Overseas enquiries welcome. PLEASE ADD 15% VAT TO ALL PRICES.	Finger guards for above - 50p each. Also small type Papst fans as above measuring (PP 25p). RS price for all these fans are now around $£ 12.50$ each!!!

WIRELESS WORLD. JANUARY 1980

Minimum order $£ 3$ value of goods. P\&P or Carriage and VAT at 15% on total must be added to all orders.
CALLERS VEY WWELCOME STRITLIY BETWEEN Gam-1 pm and $2-5$ pm Monday to Saturday inc.

NORWOOD ROAD, READING
TELEPHONE NO. READING 669656

PSI Comp 80 280. Based powerful scientific computer Design as published in Wireless World, April-September, 1979

The kit for this outstandingly practical design by John Adams being published in a series of articles in Wireless World really is complete

Value Added Tax not included in prices

 u.K. ORDERS. Subiect to 15% surchrge for VAT': NO charge is made for
cariage: Or curren rate if changed

UK Carriage free

POWERTRAN COMPUTERS

(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE
ANDOVER
ANDOVER HANTS SP10 3NN

Newnes Technical Books for the '80s

Available now:
Teletext and Viewdata Sudio Equ. Money Audio Equipment Tests
Gordon J. King Microprocessors for Hobbyists
Ray Coles £5.50 (US\$12.50) E6.50 (US\$14.75) Rav Coles
Radio and Electronic Laboratory Handbook
£2.95 (US $\$ 6.75$ R17.95
Tht Ed. M.G. Scroggie and G.G. Johnstone (US $\$ 40.50$)
Two-Metre Antenna Handbook

Coming early in 1980:
Guide to Broadcasting Stations 18 th Edices
EBC Introduction to Microcomputer Programming
P.G.G. Sandersson
(US P.G. Sanderson
Questions and Answers Amateur Radio
F.C. Judd
$£ 1.75$ (US $\$ 4.00$) approx.

And there will be more to keep you informed during the And
year
For further particulars, write to

Newnes Technical Books Borough Green,Sevenoaks, Kent TN15 8PH Tel: (0732) 884567

KELSEY K102M TRANSFORMERLESS BALANCED LINE MICROPHONE AMPLIFIERS

ww - 083 FOR FURTHER DETAILS

> Dual output power supplies
 Now you can get on-card dual output Each supply is fully regulated with
powe supplies 5 trom Vero Systems -
over voltage over current and themal power supplies from Verd Systems : Duat in joit

ORDERCODE
89.26655
89.2671 K

VERO SYSTEMS

- VERO SYSTEMS (ELECTRONIC) LTD

YOUR LAST CHANCE to obtain Wireless World Circards.

- We still have some copies of the original Wireless World circuit cards, even though the companion

WIRELESS WORLD. JANUARY 1980

DE LUXE EASY TO BUILD LINSLEY-HOOD 75W STEREO AMPLIFIER $£ 99.30$ + VAT

WIRELESS WORLD FM TUNER $£ 70.20$ + VAT

INSLEY-HOOD CASSETTE DECK $£ 79.60$ + VAT

TRANSCENDENT 2000

Cabinet size 24.6"x15.7"x4.8" (rear) 3.4" (front)
CHROMATHEQUE 5000 5-Channel lighting effects system

$\stackrel{\text { D }}{\text { D }}$

COMPLETE KIT ONLY £ 49.50 + VAT

Penel size 19.0"x3.5". Depth $7.3^{\prime \prime}$
MrA200 100W MIXER/AMPLIFIER

ianvs

As featured in Electronics Today International

ONLY
$£ 168.50$ + VAT!
ํumanaim

WIRELESS WORLD JANUABY 1980

WIRELESS WORLD, JANUARY 1980
Now-highest quality copying at low cost OTARI

cassette duplicator The first tow eost copier to give you reliability
and performance to professional standards. No
other copier can other copier can match its precision engineering,
and it is the only budget copier suitable for music programmes.
$*$ One master, 2

* One master, 2 slaves.
* Automatic rewind.
$*$ Ferrite heads.
* Ferrite heads.
* 161 I dulicicting ratio.
* Modular slave decks
* Modular slave decks with $D C$ servo motors.
Also available: Reel to

OTARI from ITA

6

WW - 086 FOR FURTHER DETALLS

CHILTERN
 ELECTRONICS B.C.M. BOX 8085 LONDON WC1V 6XX

PDP8 COMPUTERS:
PDP8E. Latest version with 16 K Core, as new
PDP81 8K with high speed tape reader/punch $£ 800$ PDP81 8K with high speed tape reader/punch .o. $£ 450$
PDP81 and PDP8L 4 K processors All above with teletype interface and ready to use - 1 -
software available includes BASIC, FOCAL, FORTRAN, etc. software available includes BASIC, FOCAL, FORTRAN, etc.
UDC8 Industrial Interface for PDP8 - provides 50 inputs
and and outputs isolated and buffered for process contro
Brand new, with all data and cables....... $\mathbf{4 5 0}^{2}$ Brand new, with all data and cables more PDP modules and add-on memory in stock! TERMINALS:
GE TERMINET - modern. $30 \mathrm{ch} / \mathrm{sec}$ silent terminal. Full ASCII set, correspoindence quality upper and lower case Ideal for word processors. RS232 Interface. As new with keyboa
Without keyboard

INCOTERM SPD $10 / 25$ Intelligent terminals. Top quality
VDU with powerful computer. Memory 4 K Core and 4 K VDU with powerful computer. Memory 4 K Core and 4 K
MOS. Two RS232 ports. Second vide MOS. Two RS232 ports. Second video output. Detachable
ASCCII keyboard. Cost over $£ 5,000$. Offered at only $£ 750$ TELETYYES/CENTRONICSPRINTERS/VDUs - lots more
in stock $\mathbf{£ 5 0}$ to $£ 500$ in stock
ELLIOTT Paper Tape Readers, 250 ch/sem optical $\mathbf{£ 5 0}$ to $\mathbf{£ 4 0 0}$
IBM 8 -level readers with step motor, no data IBM 8 -level readers with step motor, no data Add 15\% for VAT For more details please
or ring Nigel Dunn on 0494714483
WW - 093 FOR FURTHER DETAILS

Electronic Brokers
 49/53 Pancras Road LondonNW12QB Tel: 01-837 7781. Telex 29869, No. 1 in Second User Minis \& Peripheral:

DEC EQUIPMENT
PDP11/04BD 9 -slot $51 / 4$ " Processor with 8 KW
MOS and DL11W Interface. BRAND NEW SURPLUS $1051 / 4$.

Large stocks of DEC modules and add-ons
PRINTERS \& TERMINALS
 HAZELTINE $\mathrm{H}-2000$ Editing Visual Display Unit
from $£ 395.00$
Uns SCOPE DATA Electrosensitive Printer $\begin{aligned} & \text { £495.00 } \\ & \text { TEXAS } 725 \text { Portable Terminal } \\ & \text { TEXAS 733ASR Terminal }\end{aligned}$. from $1,450.00$

NEW ASCII KEYBOARDS -NEW LOW PRICES

$\substack{\text { beain } \\ \text { kem } \\ \text { med }}$

KB701 plastic encio.
KB756 or KB756MF
KR702 Steel enclosure for
KB756 or KB756MF KB2376 Spare ROM Encode
 $\mathrm{OC}-512 \mathrm{DC}$ convertor to allow
operation at 5 V only (plugs in PB.B.). boarsor incoluol cluster numeric/ cursor control cluster, mounted
in steel enclosure in steel enclosure con
DEB5S Mating conector for
KB7 KBERK 56 -station ASCli Key-
Pboard for PET. Complete with PET interft Complete supply and steel enclosure

Discounts available for 145.00

MISCELLANEOUS

CALCOMP 565 Drum Plotters $\ldots \ldots 1,250.00$
DIGITRONICS P120 Paper Tape Punches $£ 75.00$

 SHUGART SA800 8"Floppy Disc Drives $\begin{array}{lll}\text { E } 19595.00 \\ £ 3\end{array}$

THE COMPLETE SOLUTION TO THERMOCOUPLE AMPLIFICATION

Appointments

Programmable Cold Junction
Compensation
Complete with Adjustments
Platinum R/T Stability for C.J.C.
Zero Suppression/Elevation Built in

The Model TA100 thermocouple conditioning Unit is housed in a $50 \times 50 \times 15 \mathrm{~mm}$ package and can be used to condition any type of thermocouple.
Simply dial in the Thermocouple sensitivity (in $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$), set gain and zero, and the Unit automatically corrects for the Gone are problems of diffe applications
THE ONE ANSWER

CIL Electronics Ltd 14 Willowbrook Road,
Worthing, Sussex BN148NA Tel: Worthing (O903) 204646
Teleex: 87515 WISCO G ATT CIL

To obtain further information circle number 47

SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

al TYPE U4323
COMBINED WITH SPPOT FREQUENCY OSCILLATOR

$$
\begin{aligned}
& \text { £8.00 } \\
& \text { Packing and postage } £ 1.00
\end{aligned}
$$

Advertisements accepted up to 12 noon Monday, January 21st for February issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 10.00$ per single col. centimetre (min .3 cm)
INE advertisements (run on): $£ 1.50$ per line minimum three lines INE advertisements (run on): $£ 1.50$ per line, minimum three lines. dvertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU) PHONE: Neil McDonnell on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

ELECTRONICS TEST ENGINEERS

Staying true to type is our Vere Linotype-Paul. world eaders in the design. of an advanced range of photo-typesetting equipment. Our highly sophisticated machines are revolutionisi the graphics industry and setting increasingly higher standards of type production Keeping our systems on the
leading edge of technology is eading edge of technology our efforts. we need more skilled electronics tes engineers. If you have 2-3 years experience of testing complex
digital equipment. ideally reinforced by ONC or

equivalent. you couild build a great career with us. A knowledge of analogue circuitry would be an added $\begin{gathered}\text { advantage. }\end{gathered}$ The workis deeply interesting he work'is deeply interesting
and stimulating - and never autine. Staff facilities include superb working conditions. sick pay scheme.a
subsidised canteen and relocation expenses where And salary structures are highly.competitive.
Posts are open to both men
etails. write or telephone to the Personnel Department. Linotype-Paul Limited Runnings Road. Chetienham. Te. Chetenhant 45001
Linotype-Paul
THORN CONSUMER ELECTRONICS LTD.

Advance Study Encineer

Thorn Consumer Electronics Limited, leading manufacturers of television and audio equipment in the U.K. wish to appoint an experienced Engineer for their
Advance Study Group situated in the Research and Engineering Centre at Enfield. The successful applicant will jioin a team investigating new ides and syster The successtul applicant will join a team investigating new ideas and systems
including digital techniques and microprocessors as well as modern analogue
methods. methods.
He/she should preferably be under 35 years of age with a degree or H.N.C. or
relevant experience, recent graduates will be considered.
The Personnel Mato
The Personnel Manager (ASE/WW)
Thorn Consumer Electronics Limited
Great Cambridge Road, Enfield, Middlesex EN1 UL
or telephone 3635353 extension 2201 for an application form
(9948)

University of Wales DEPARTMENT OF PHYSICS ELECTRICAL ENGINERING M.Sc./DIPLOMA COURSE in ELECTRONICS

Further details and application forms
(returnabie as soon as possibile) may

ADDolnimenis
134

\star sound knowledge of advanced electronics, particularly in the broadcast television field

* sound knowledge of foreign language would be useful

An attractive salary and benefits package is offered.
Please telephone Clive Legg on Reading 85200, Ampex Great Britain Limited, Acre Road, Reading, Berks.

IN BROADCAST TELEVISION COLOUR CAMERAS AND

VIDEO TAPE RECORDERS

This is an opportunity to join a company in the forefront of technological innovation in a position involving contact with engineers from all over the world and some overseas travel.
The essential qualification are:

* experience as, or personality to become, an expert instructor training engineers of many nationalities.
AMPEX CORPORATION, a world leader in analogue and digital data recording technology, has been designated the official supplier of video ecording and magnetic tape products to the 1980 Moscow Olympics.
Early in 1980 the Group's Training Department in Reading will need an additional

INSTRUCTOR

ANTENNA
SALES
ENGINEER

Foreign and Commonwealth Office
 Telecommunications Officers

sin London and at Hanslope Park, Milton Keynes, for work in the
instalation momidication, maininenance and operetion of of, VHF,
$\begin{aligned} & \text { some using analogue and digitial techni } \\ & \text { elegraph and othe specialised equipment. }\end{aligned}$
$\begin{aligned} & \text { Candidates must have served an apprenticeship or have had equi- } \\ & \text { valent training. They should normally have } 3 \text { years } \\ & \text { relevant ex- }\end{aligned}$
$\begin{aligned} & \text { Salan: } £ 4.575 \text {-56. } 100 \text { : London } £ 780 \text { more. Starting salary may be } \\ & \text { above the minimum for those with additional relevant experience. }\end{aligned}$
$\begin{aligned} & \text { bove the minimum for those with additional relevan } \\ & \text { Promotion prospects. Non-contibutory pension sheme. }\end{aligned}$

 ELECTRONIC TECHNICIAN GRADE 5

King's coulege lonoon
-ELECTRONICS TECHNICIAN

For interesting work in busy
Physics Research Department including construction, reparir
and maintenance of equipment.
 Good condititions. 5 -weeks k a an-
nual holiday. Superannuation
sche mid nual holiday. S. Speran eation
scheme. Interest-free loans for
annual rail season tickets. Salary annual rail season tickets. Salary
on scale $£ 4440$ p.a. to $£ 5.100$
p a. inclusive (Apply in writing with full de-
tails to: The Head Clerk (Ref. 221743WWW, King's College
London, Strand WC2R 215

Success is simply a matter of Luck
ask any failure - Ear Wilson. Digital Engineers - - get lucky in
FIELD SERVICE

TOP JOBS IN ELECTRONICS Posts in Computers, Medical,
Comms, etc. ONC to Ph. D. Free Comms,
service. (9943)

Career Opportunities inAudio Electronics DODolby Laboratories ${ }^{\circ}$

The UK operation of this international
name in audio electronics manufactures
comprehensive range of profession
noise reduction systems which is
employed world-wide in the broadcasting
Application Consultants c. $£ 9,000$
Reporting to the International Marketing Director, the prime responsibility will be the
provision of a full technical consultancy to professional users. Major activities will include advice on installations and equipment compatibility in cinemas and
studios; training installation and sevvice technicians; distributor and end-user liaison; field servicing and troubleshooting operational problems; and
sound consultancy during film dubbing. Candidates are likely to have a broad-based audio background ideally electronics, as well as professiona recording and mixing. Essential personal qualities include the ability to work with
considerable autonomy and flexibility to considerable autonomy and flexibility to
high professional standards. World-wide high professional standards. World-w
travel is involved for which a working knowledge of a European language would
be an advantage. Ref: AA57
Production Engineers
(Electromechanical \& Electronic) c. $£ 7,000$

Reporting to the Production Director, the include the introduction of new products to ine production; production improvements trouble-shooting; modifification control; and R \& D team. The electromechanic engineer will have prime responsibility for all mechanical aspects of production, with major emphasis on assembly processes; ig, fixture and tool design; and packaging
he electronics engineer will have esponsibility for defining test procedur
and for the design, development, equipment. An analogue background is equipment.
desirable.
Candidates Candidates, probably in their mid-20s to
30 s , will be of graduate 30s, will be of graduale or equivalent an ability to produce reliable, monstrate cost-effective solutions. Considerable autonomy is offered; experience gained in a small-company environment would be
an advantage.
Ref: TE61/7147/WW. an advantage.
ervisor c. $£ 7,000$ Reporting to the QA Manager, the
Supervisor will assume full responsibility for inspection of 'in-house' assembly operations. Key tasks will be the motivation, control, training and
development of the inspection t the preparation and analysis of inspection reports and quality investigations to
improve both quality standards and improve both quality standards and Initial interviews are conducted by PA
Consultants. No details are divulged to consultants. No detalls are divuliged to send brief career details or write for an
cost-effective production. This post is engineers (from age 23 years) who seek a tepping stone into line management. The attractive salaries will be supplemented by competitive benefits which include relocation assistance.
Location: London SW9.
Ref: W61/7149/W reference number on both your letter and ecently made any other applications
PA Personnel Services.

PA Personnel Services

Hyde Par

$$
\text { Telex: } 27874
$$

recording and film industries. Dramatic increase in world demand has stimulated the company's development, creating the
following exciting career opportunities
fol
\qquad

AMPEX

BROADCAST VTR ENGINEERS
 FOR MIDDLE EAST AND AFRICA BASED IN ATHENS

We seek HNC calibre Electronics Engineers or those with equivalent experience, to whom product training will be given. They will be required to travel and work Regional Office in Athens.

Salaries reflect the demanding nature of the job. Assistance with relocation, rent, education expenses will be given. Pension, medical expenses and insurance

Write fully to Don Cameron, AMPEX, P.O. Box 45, Halandri, Athens, Greece, or for application form from Clive Legg, Ampex Great Britain Ltd., Acre Road, Reading, Berks. on Reading 85200.

The Group parent company, Ampex Corporation, has been designated the official
supplier of video recording and magnetic tape products to the 1980 Moscow Olympics.

Electronic EngineersWhat you want, where you wan!!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary allied disciplines - right through from
levels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL
PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.
TJB

Please send me a TJB Appointments Registration form:
Name .
Address

London Borough
or Bromley
RAVENSBOURNE COLLEGE
OFART AND DESIGN
SENIOR ENGINEER
television AND BROADCASTING

A senior television broadcast en-
gineer is required to manage a gineer is required to manage a
small engineering section of the television department. Duties will include installation and mainte-
nance of the broadcast standard colour television installations
which are used by the departwhich:
ment.
The successful applicant should
be qualified to H.N.D. level with be qualified to H.N.D. level with
recent experience in the unrecent experience in the un-
supervised maintenance of col-
our television broadcast studio our television broadcast studio
and video systems, including and video systems. including
cameras and quadruplex video
tape equipment tape equipment.
Salary on grade T5 within the range 56610 to $£ 5937$ including
London Weighting. fin Further details and application
forms from the: Registrar, forms from the: Registrar,
Ravensbourne College of Art
and Design Ravensbourne Coliege of Ari
and Dosign, Wailen Road,
Chislehurst BR7 5SN. Chisleh
(9899)

THE POLYTECHNIC OF CENTRAL

Engineoring Division ELECTRICAL WORKSHOP/ LABORATORY TECHNICIAN GRADE 3 Salary: E3a56-53861 inclusive of Lon-

TELECOMMUNICATIONS ENGINEER Salary $£ 7,000$ Good all round engineer required
for an International Company for an International Company
with worldwide telecommunicawith worldwi
tion network.
Good knowle munications peripherals and
multiplexin multiplexing. Facsimile ex-
perience an advante perience an advantage. Some
international travelling will be necessary.
Apply in the first instance to Miss L. J. Walker, United
Press.

How to get second interviews without having first ones, you have to cut a few corners.

All too often, first interviews are unnecessary. You provide a mass of information for the second or third time
You're screen people.
ou're screened by comparatively junior And you have to invent some excuse for being
away from your own job at an inconvenient away from your own job at an inconvenient time. You meet the decision-makers and you know they're interested.
Lansdowne can save you from wasteful first
interviews.
Just fill in and send us this coupon and you
will receive our ' F irs Interview'
And, because we have access to the
pportunities in over 3,000 companies, large and mall, we can match you with the situations that might suit you. directly and invite you interview.

From then on, it's up to you.
As you'd expect from Britain
As you'd expect from Britain's most professionally respected register, we maintain total confidentiality throughout.
And you can specify those companies to which you do not want your particulars sent. of time. Cutting corners could save you a great deal
time. Why not cut a few right now?

RADIO OFFICERS

If your trade or training involves radio operating, you
qualify to be considered tor a Radio Officer post with the qualify to be considered ino ation.
Composite Signals Organisation.
A number of vacancies will be available in 1980/81 for suitably qualified candidates to be appointed as Trainee
Radio Officers. Candidates must have had at least 2 years radio operating experience or hold a PMG, MPT or MRGC certificate, or expect to obtain this shortly
On successful completion of 40 weeks' specialist training, appointees move to the Radio Office Grade.

Salary Scales:

Trainee Radio Office Age 19 £3271 Age $20 £ 3382$ Age $21 £ 3485$ Age $22 £ 3611$ Age $23 £ 3685$ Age $24 £ 3767$ Age $25+£ 3856$

Radio Officer

 Age 19 £ 3961 Age $20 £ 4107$ Age $21 £ 4243$ Age $22 £ 4359$ Age $23 £ 4571$Age $24 £ 4854$ Age $24 £ 4854$
Age $25+£ 5166$ then by 5 annual increments to $£ 6981$ in-
clusive of shift working and Saturday Sundày elements.
For further details telephone Cheirenham 21491
below.

TELEVISION PROJECTS ENGINEERS

 disionn, production and test tof final acceptance.
The positions offer the chance for energetic en
 to many professional TV broad casters in th
travel here and abroad could be involved.
In particular this opportunity would suit engineers possessing some experience
in electronic testitg wwishing to. expand their horizons and gain experience in
tele in electronic testing wishing
television broadcast s systems.
In addition to a good salary the company offers profit-sharing and non-
contributory pension schemes, free BUPA membership, a friendly environment contributory pension schemes, free BUPA me
in rural settings and excellent career prospects.
pro-bel

MARTIN-BAKER (ENGINEERING) CO. LTD.
has a vacancy for an

ELECTRONIC TECHNICIAN

AT CHALGROVE AIRFIELD, OXFOR

The successful applicant will be required to assist small eam, on commissioning and operation of telemetry and instrumentation systems for ejection seat trials.

QUALIFICATIONS - Ability to make prototype units from rough drawings and test to specifications using tandard test equipment (Gained as a radio amateur perhaps).

Salary range $£ 5500-£ 5700$ per annum. Weekly paid. 40 -hour week. 22 days' holiday per year, non contributory pension scheme after five years

Enquiries to: Mr. G. B. Thompson, Martin-Baker (Eng) Co. Ltd., Chalgrove Airf

Editorial writer for Wireless World

Wireless World needs a new person on its editorial staff. Technical experience in electronics and/or communications and an ability to write are essential. The work is varied and other material attending meotings, exhibi tions press conferences and other events, some, proad and editing contributed technical articles. A good deal of freedom will be given to a person who shows ability and responsibility. a perserred who range 25 to 35 .
Write to: The Editor
WIRELESS WORLD
Dorset House, Stamford Sreet
London SE1 9LU

(9947)

HNC Level Engineers~

(Electrical or Electronic)
Train for the future as a Broadcast Transmission Engineer

Through our network of over 500 transmission stations the IBA is responsible for the transmission of all Independent Television and Local Radio services. With a steadily increasing number of stations, the preparations for the now underway we are taking on increased responsibilities. now underway we are taking on increased responsibilities We take great pride in the fact that our system is one of the best in the world To do this we have teams of highly trained and experienced engineers all over the country.
Internal promotions and continued expansion have created a number of
opportunities for H.N.C. or H.T.C. or equivalent level engineers (mate of female) to train for a challenging future. Our carefully devised training programme, which will commence this summer, can lead to a recognised Diploma and combines theoretical study and practical training. This comprehensive training is a step beyond traditional learning and gives a
grounding in broadcast engineering that is second to none. Naturally, cou grounding in broadcast engineering that is second to none. Naturally, course
fees, accommodation and meals will be paid during the course. A full driving licence is required, but if you do onot already have one, we will assist you by arranging and paying for instruction.
On the satisfactory completion of the training programme, your salary will be
$£ 5,880$ per annum and then rise annually to $£ 7,280$ per annum progression to $£ 8,202$ per annum. (During the training period you will receive a salary of up to $£ 4,700$ per annum, depending upon experience.). At higher levels it will be up to you to demonstrate your ability à s promotions started their careers at transmitting stations.
Employment benefits include Free Life Assurance and Personal Accident Schemes, a Contributory Pension Scheme, generous relocation expenses and subsidised mortgage facilities.
Please write or telephone Mike Wright for a fully illustrated information package and application form, at BA, Crawley Court, Winchester,
Hampshire SO212QA. Telephone: Winchester

NDEPENDENT BROADCASTING aUTHORITY

DESICN ENGINE:B

WIRELESS WORLD, JANUARY 1980

SOUTHERN ELECTRICITY Littlewick Green, Maidenhead

SECOND ENGINEER

 (TELECOMMUNICATIONS)CHIEF ENGINER'S DEPARTMENT
SALARY WITHIN THE RANGE $£ 6,830-£ 8,955$ PER ANNUM Applications are invited for the above post in the Technical
Services Section of the Chief Engineer's Department. The successful applicant will be part of a team engaged in design, commissioning, and subsequent maintenance o
telecommunications systems throughout the South tricity Board, and must be able to spend periods away from
Head Office when car Head Office when carrying out these duties.

Schemes in progress include telecontrol, data communicacircuits and radio and line telephony systems. Applicants should have had experience in some of this work and prefer ably be in possession of suitable technical qualifications.

The successful candidate will be required to drive a motor Appropriate relocation assistance will be a Boar

Applications on forms obtainable from the Secretary, Southern Electricity, Southern Electricity House, Littlewick Green, 76/79 by not later than January 11, 1980

FIELD ELECTRONICS ENGINEERS

Gardline Surveys are a leading Hydrographic and Geophysical Survey tion services to oil companies and other clients. personnel:
SEISMIC ENGINEERS-with a strong electronics background, a
amiliarity with digital acquisition systems and preferably with marine
or shallow marine operations.
UNDERWATER SYSTEMS ENGINEERS-with a sound back-
ground in electronics and an aptitude for practical work and fautl
finding. Gardline operates a variety of equirment including Huntec nding. . Gardline operates a a variety of equipment including Huntec
peep Tow Boomers, E. G. and G. Sidescan Sonars, Magnetometers, parkers. etc. Experience with one or more of these systems is
pesirable but not essential. POSITIONING ENGINEERS
vessel Invigation or oil rig positioning experience in the field of surverver
ositionening systems including Saperates a variety of positioning systems including Satellitite Navigation, 2 MHZ avariety of
Syledis and
Trisponder. A computer conjunction with the aboove equinp track. Famiter are e esually ysed echniques
Whilst formal qualifications are an advantage, experience and the
ability to work effectively in a field environment is prime importance. We expect our engineers to be adaptable and prite importance. We expect our engineers to be adaptable and
willing to learn to use systems that they are not familiar with at present. Employment will be based at Great Yarmouth or if required Aberdeen.
Operations are primarily North Sea based but there are good prospects of overseas employment through our branch offices in Houston and
Shariah (I.A.E.). Shariah (U.A.E)
Salary is fully negotiable and with sea pay is likely to be around
£8,000.
There is a company pension scheme and 4 weeks' annual leave plus
roster leave accrued whilst at sea.

Professional Careers in Electronics

All the others are measured by us... At Marconi Instruments we ensure that the very best of innovative design is used on our range of
communications test instruments and A.T.E. We have a communications test instruments and A.T.E. We have number of interesting opportunities in our Design,
Production and Service Departments and we can of attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.
If you are interested to hear more, please fill in the If you are interes
following details:

Appointments

HOLLAND

Holland, the most 'English' country in continental Europe offers you high salaries and exce
If you have the following background you could earn around
We have an immediate need for:
Technical Authors and/or Instructors, with either an electronics, radar/sonar or weaponry background. Contact Norma Baxter on 01-952 8092 or evenings between 6 pm and 8 pm on $01-2071725$. The Howard Organisation enjoys an international reputation
and you are invited to benefit from our experience and success and you are invited to benefit from our experience
Howard Organisation International Ltd Employment Business Section
use, 140 High Street, Edgware, Middx HA8 7BS

ENGINEER

(MALE OR FEMALE)
(MALE OR FEMALE) £4,317-£4,770

Epsom
For the Media Resources Centre, Glyn House, Church Street, Ewell. To carry out on-site service/ repair wildren (1) electronic
equipment used for teaching deat children (Vadio microphones, speech trainers, group hearing aids. audiometers, etc). To remove from site and repair in Ewell
workshop those items best serviced by bench work. You will be workshop those expers mented school to school and school to base in
expectod travel
your own vehicle, for which Casual User car allowance will be your own vehicle, for which Casual User car allowance will be
paid. You will be expected to diagnose and repair the special paid. You will be expected to diagnose and repais
equipment as necessary, working alone in schools
Proven abiity yo carry out the above work and a current driving
licence are essential requirements. The Centre is situated within Proven ability to carry out tie ants. The Centre is situated within
licence are sssential Iequirement
easy access to public transport and ample free car parking is easy access to
available on-site.
Application form from Media Resources Centre, Tel.
$01-3930208$.
(1) SURREY

COUNTY COUNCIL

TAITO ELECTRONICS ENGINEER

An enthusiastic and self-motivated engineer requird work on the latest microrpocosssor controlled coin operated vi
rapidly expanding company in the leisure industry. Applicants should possess a good working knowledge of fault finding Applicants should possess lavod. xcellent working conditions and highly competitive salary for the right candidate
pplications
afficer,
TAITO ELECTRONICS LIMITED

MINISTRY OF DEFENCE

Telecommunications Professional and Technology Officers III BRITISH FORCES GERMANY

For (a) management and development planning for a private telephone
network, (b) maintenance and repaii of a multi-chan network, (b) maintenance and repair of a multi-channel radio and relay
networ, (c) maintenance and repair of a colour TV transmission
eystem, Candidates should be British Subiects, hold a current British system. Candidates should be British Subiects, hold a current British
driving liecene, and must possess a City and Guilds certificate for
triver telecommunications technical final or Part II (or intermediate plus 3 日
subjects, which must include mathematics and tele-communications subjects, which must include mathematics and tele-communications
orincipess) or radio television and electronisctechicians final or Part
ril, or an equivalent or higher acceptable qualification. Candidates must III, or a enequivalent or higher acceptable quatification. Candidates must
have served a recognised apprenticeship or had equivalent training have served a recognised apprenticeship or had equivalen ex erience.
and have at least three years' apopopriate operating experince.
Ex-Service candidates who do no fuffil the above requirements will be considered only y if atter complotting a course of apporoved technical
raining they have served for at least three years in an approved trachnical capacity in HM Forces with the rank of Staff Sergeant or
tecuivalent. A knowledge of German, although not essential, would be
equal equivient. A
an advantage.
Salary: $£ 4984-$ - 5551 (currently under negotiation) plus an allowance
equal to Inner London Weighting of $£ 780$ and Foreign Servic equal 1 Iner Lendon weighting of $£ 780$ and Foreign Service
allowance ranging from $£ 1365-£ 2810$. There are additional grants and allowances dependent on individual circumstances.

For further information and an application form (to be completed and returned by 18 th January, 19) please wie, 317 , to: Ministry of Defence, $\mathrm{CM}(\mathrm{S}) 3 \mathrm{3e2}$, Room 317 , Adelphi, John Ad
Street, London WC2N $6 B B$, or telephone $01-2174677 / 5128$.

Senior Electronics

Engineer

for component and standards evaluation Within the Techniques and Components Section of our
Engineering Department at Borehamwood we now require a
Senior E Ilectronics Encineer to Senior Electronics Engineer to work on a wide variety of
components ranging from the latest semiconductor devices components ranging from the latest semiconduc
through to state-of-the-art printed circuit boards.
It's a job calling for a man or woman qualified to degree, HNC or
equivalent level with several years' sound practical experience of ecuivalent leve with several years' sound practical exeeperience or
component and standards evaluation, application rules and component and standards evaluation, application rules and
packaging techniques. Specialist training can, however, be give packaging tectniques. Specialist tral
where specific experience is lacking.
We offer a competitive salary; atrractive benefits, including
assistance with relocation expenses and the opportunity of assistance with relocation expenses, and the opportunity of
working in a challenging environment as a member of a highly working in a challee
professional team.
Write with details of experience to Ivan Hickmott, GEC-Computers Write with details of experience to van Hickmott, GEC
Limited. Elstree Way, Borehamwood, Herts. WD6 1 BR elephone: 01-935 2030.
\qquad

To $£ 6,500$ plus car middLesex
We make an extensive range of environmental test systems, covering every application from strain measurement to the vibration of vehicles and buildings.
If you are
-self-motivated and self-reliant;
-qualified to HNC or equivalent in electronics / radio -experienced in analogue and/or digital work
Then we can offer you a wide variety of testing and commissioning experience, working with newly deve loped modular control systems, in house and also
SERVOTEST IIMITED

\qquad

DIAL 01-741 4011
Think of the Op Amp and the NAND Gate and your are through to:
CHARLES AIREY ASSOCIATES
4 Hammersmith Grove
London W6 ONA
Think of the Op Amp and the NAND Gate and your are through to:
CHARLES AIREY ASSOCIATES
4 Hammersmith Grove
London W6 ONA
Think of the Op Amp and the NAND Gate and your are through to:
CHARLES AIREY ASSOCIATES
4 Hammersmith Grove
London W6 ONA

Technical Manager

Radio Communications London
to be responsible for the management of staff engaged on type
testing of communication equipment for maritime and land services to testing of communication equipment for maritime and land services to
approved Home Office specifications. Work will involve development
of specitications and approved Home oftice specitications. Work win involve development
of specifications and particination in national and international
techical comittees
communications.

Candidates must have an HNC or equivalent qualification in a rèlevan subject. They must also have electrical/ electronic engineer
experience and a detailed knowledge of radio communications. Salary starting at $£ 8,440$ and rising to $£ 9,380$. Promotion prospects.
Non-contributory pension scheme.

For further details and an application form (to be returned by 17 January, 1980 , write to to ivill Service Commission, Alencon Link Basingstoke, Hents. RG21 1JB, or telephone Basingstoke (0256)
68551 (answering service operates outside office hours). Please 68551 (answering
quote ref. $T / 5266$.

HOME OFFICE

TEST/
 co

CURRENT VACANCIES INCLUDE:
Chief Control Engineer for multi-million pound company engaged in
the manutacture of roof tiles. Managerial ability as important as the ability to create a new generation of process automation products.
Surrey. Excellent salary.
Young Entroproneurial Enginoers to join a multidisciplinary company with interests in: radio-control led target systems, range
finders, aerospace product, etc. Good
software experience. Wilts. Salary good. perience. Wilts. Salary good
Microprocessor Hardware / Software Engineers to design systemis
and supply modules for a very wide range and supply modules for a very wide range of applications. Experience
in either:M6800, R.P.A. $1802, G M 1650$ or INTEL 8085 . Berks. Salary - "What 'es worth.
INTEL Microprocossor Engineers for message switching systems
based on a minicomputer and the INTEL 8080/85/86. Surrey - to £9,000.
Digital Engineers for exceptionally advanced technology associated with an MPU control sy
radar. To $£ 9,000$. Berks.
Computer Engineers for either technical support, field service,
permanent site or systems test. Vacancies througout the U.K. For further details, please contact

Charles Airey Associates

ELECTRONIC ENGINEER

INSTRUMENTATION DESIGN ASSISTANT
An Electronics Engineer is requird to join a Design team working
on the development of scientific instruments. An hee development of scientic instraments.
The job will require knowledge of analoge and ditial techniques.
opether with some experience in applying micropococessors and ogether with some experience in applying microprocessors and
nerfaces to design problems. Applicants with cict \& Guilds, ONC, HNC or graduate qualifica-
tion will be considered. tions will be considered.
Day release will be offered to persons already following a suitable course.
A pogressive salary will be offered to the successful candidate and
relocation where necessary. Flexible working hours operate in the aboratory. Those interested should writ
quoting ref: $\mathbf{P S} \mathbf{6 5 5} \mathbf{~ A M A .}$

The Employment Officer
Unilever Research
Port Sunlight Laborator
Port Sunlight Laboratory
Port Sunhight, Wirral
Mel: Merseyside, L62 $\mathbf{L x N}$
Tel: $051-645$ 2000, Ext. 8408

Petty-Ray Geophysical Division of Geosource is one of the
leading companies in the field of oil exploration, and due to our ever-increasing workload, require single personnel, in the age
range $11-25$, who are looking for a varied and linteresting
career working overseas.

You should be educated to ONC/HNC in Electronics or C\&G
Radio and TV Technician level, and on appointment, you will be Radio and TV Technician level, and on appointment, you will b
assigned to one of our field crews either in AFRICA or the assigned to one of our field crews either in AfR
MIDDLE EAST for on-theiob training in the operation and
maintenance of digitalal seismic recording equipment.

Candidates must be in possession of a current driving licence.
We offer a good starting salary which is paid NET, food and
accommodation will be provided, and rest leaves are generous.
If you would like to have more information about these positions please write giving brief career details to the Personnel Officer.
(1) umbever

GEOSOURCE

3/5 The Grove•Slough•Berkshire SLI 1QG

Commissioning Editors

£7000 negotiable
Butterworths, publishers of legal, medical,
scientific and technical books, are looking
scientific and technical books, are look
for two experienced Commissioning for two experienced Commissioning
Editors to develiop lists of books on electronic engineering, electrical
engineering and computers. One Editor engineering and computers. One Editor
will be required to work with professional engineers and academic staff to provsiona reference bo
extbooks.
The other is neededtotake over andextend
a programme of publishing for enthusiast a programme of publishing for enthusiast onstructors, persona computer users personnel.
Our modern offices are in pleasant rural
surroundings about 50 minutes from
ondon.
Please write to:

\square| \square |
| :--- |
| $\square \square$ Butterworths |

Butterworths

ELECTRONIC SEISMIC ENGINEERS

We are looking for young electronics engineers, with degree or equivalent qualifications, to join our marine seismic acquisition
company.
This is a field position, with the successful applicants joining the This is a field position, with the successtul applicants joining the
technical crew of our exploration vessel for on-board training in seismic technical crew of ourep start as Assistant Technicians with a salary of
techniques. They will
f6.00 $\mathrm{f}, 0000+\mathrm{p}$
on the crew.
The seismic industry offers an interesting career with world-wide Sefel Geophysical is a member of the Sefel Group, which has seismic
processing centres in Houston, Denver, Calgary and London.

Please write with full curriculum vitae to:

ELECTRONICS TECHNICIANS

OVERSEAS APPOINTMENTS

Nomorelong goodbyes

Radio Officers

communications

Radio Communications
Electronics Engineers and Software Designers
Mid-Sussex-S.W. London Salaries up to $£ 8,000$ To join our expanding R\&D Laboratories covering a wide range of R.F.
spectrum, from L.F. to V.H.F. Equipments include transmitters and spectrum, trom L.F. to V.H.F. Equipments incluad transmitters and
reecivers for marie- and lard-based use, radio navaids and radio
monitoring remote computer-controlled systems. morrorics Eniners had Electronics Engineers should have experience in transmitter or receiver
design, analogue or digital circuit design, microprocessor applications. design, analogue or dicitiat circuit design, microprocessor applications.
Sotware Designers should be experienced Program mers with an interest in control, signal processing or navigational software. Attractive salaries are complemented by excellent prospects and
generous benefits. generous benelis.

Contact: David Bird, Redifon Telecommunications Limited,
Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874
7281 (

(9938)
DEPARTMENT OF NUCLEAR PHYSICS, UNIVERSITY OF OXFORD
EXPERIMENTAL ELECTRONICS LABORATORY

Marine Radio Service Engineers Glasgow, Aberdeen,Tilbury.

 Cardiff and NewcastleInternational Marine Radio Co., a member of the TC Group of Companies, is engaged in the equipment. We have vacancies for Marine Radio Service Engineers in our Glasgow, Aberdeen, Tilbury, Cardiff and Newcastle Depots.
The work will be concerned with installation and service of communication equipment on board
mandidates mall types
least three years sea experience as a Radio
Electronics Officer. A company vehicle is provided
for business and personal use.
For further details on these positions please
contact: Jonathan Smith, International Marine Radio
Co. Lta., Interre House, 302 Commonside Eat.
Mitcham, Surrey CR4 1YT. Tel: $01-6403400$.
IMRC

Cometo Somerset

 to make themost of your Electronics experienceAt Wells, EMI Electronics Limited are developing
new'stateo the art' electronic systems. Current projects include microwave systems, radar signal processing, computes
real-time software programmes
Our established reputation for performance and reliability is dependent on quality requirements being incorporated in projects from inception to Due to ex

Project Quality Engineers

To work with research, development and design teams with responsibility for ensuring that
the engineering data produced complies with the quality requirements.
Applicants should be qualified to at least HNC
standard and have previous experience in related standard
fields.

Test Gear Engineers

To install, commission, calibrate and service a wide variety of proprietary and company designed test equipment. Applicants should hold an HNC or equivalent diagnosis and maintenance of modern complex electronic test equipment.

Test Engineers

To ensure that our microwave or digital
performance and quality standards.

Applicants should be qualified to at least Applicants should be qualinied to at teast
City \&GGuilds final technician certificate standard Transformer Test Technicians To undertake reliability tests on R.F. Trans-
ormers and Chokes in a small batch production formers and Cl .
Necessary specialist training will be given to he appointed applicant wh
experience in similar fields
Technical Supervisor (Electrical) electrical inspectors. Applicants should be qualified to at least ONC standard, be familiar with MO electrical inspection requirements in the Electronics Industry and preferably have previous
upervisory experience.
tartin salaries are commensurate with importance of the posts, other benefits include subsidised meals, sports and social club and the opportunity to ive and worriat ane heart of
Somerset. Where appropriate, assistance wit relocation will be discussed at interview. In the first instance please write or'phone
Wells (0749) 72081 for an application form (quoting ref. no. WW135) to D. K. Shires/F. M. Taylo Personnel Department, EMI Electronics Limited,

EM
EMIElectronics Limited, wells, Somerset

Production Manager

For Quad £9,500+car Huntingdon,Cambridgeshire

The Acoustical Manufacturing Company produces amplifiers and loudspeakers under
the brand name 'Quad' and is one of the world's most respected hi-fi equipment manu' facturers. 'Quad' products have an enviable
reputation for quality and technical excellence. We require a fully experienced Production Manager to be responsible to the Managing
Director for every aspect of the running of medium sized manufacturing plant producing domestic audial
units per week.
Candidates, male or female, should be aged Candidates, male or female, should be age
around 35 years with qualifications or experience at graduate level. The candidate should have proven success in running an electronic
assembly plant coupled with experienceofthe assemby automatic assembly and test methods
non-contributory pension benefits, including a restaurant and sickness provision. Huntingdon offers a wide variety of reasonably priced
housing; recreational amenities are excellent and London is within easy reach.

For an application form and Company information, please write to or telephone The Acoustical Manufacturing Co. Ltd., St. Peters
Road, Huntingdon PE18 7DB. Telephone Road, Huntin
048055480 . and of metal finishing.

OR SALE

 We Went Rend . incuding
Extornal
sacilities
fal silec.
el A
 ut type alch
ack
tevels. giv
asp. Add

WE'VE FORMEDA NEW R\&D GROUP

to make our shaving products even better
As one of Britain's leading manufacturers of Razor Blades, we are continuously looking into better ways to
shave, better methods and systems of production, and officiency of communication we are bringing ou efficiency of communication we are bringing our
Research and Development teams together to form one multi-discipline group at our factory in Acton
The group will be mainly concerned with the Research,
Design and Development of new shaving systems and Design and Development of new shaving systems and
concepts. Join it in any of the following positions and we can promise you plenty of opportunities to apply your
problem solving abilities to our modern technology.
Process Control Department Senior ElectronicEngineer The successful candidate will head our Control and
Instrumentation Department as Section Leader. The Instrumentation Department as
work involves the desing and implementation of a wide
range of systems from Research and Development instrumentation to Production line control systems.
Candidates should have a degree or H.N.C. in elec Candidates should have a degree or t.N.C. in ele perience of practical electronic engineering
Electronic Design Engineer Applicants should have several years experience of
practical circuit design of both analogue and digital systems. The work involves the design of a wide range of
production line control systems, and specialised elecproduction ine control systems, and sequipent required by our Research and Development Departments.
We offer excellent salaries and all those benefits ex-
pected of a major organisation. pected or ajo
Interested men and women should write with details of
age, qualifications and experience, or phone for an application form to: Senior Personnel Officer, Wilkinson Sword Ltd., 287 Acton Lane, London W4 5LE.
Tel: $01-9943666$.

WILKINSON

a SWORD
ARTICLES FOR SALE

IDEO SALES ENGINEER Required

2IN COMPUTER Rape inin computer
tape, can be used as video tape on

 $\xrightarrow[\substack{\text { ENSAPSULATING, coilis, transform: } \\ \text { ers, } \\ \text { components, } \\ \text { odegassing, sill }}]{ }$

i

Experienced All-Round Video Engineer

 MAYCO DIELDS \&

We are one of the leading video and audio companies in Belgium, distributing Sony,
JVC, National, Barco, CV3, Shintron, Microtime, etc . . The successful applicant will work in an enthusiastic team and will have the possibility
to take charge of our technical department. to take charge of our technical department. Promotion prospects are excellent in
salary and 4 weeks' holiday a year.
Written application in the first instance, giving experience and qualifications can be
sent for the attention of W. KLINKEMALLIE, Personnel Manager, and will be treated sent for the attentio
in strict confidence.
 1060 Brus
Belgium

ARTICLES WANTED

Test Engineers A rewarding outlook for the 80's

We at Tektronix are not modest about being the acknow-
ledged world leader in Test and Measurement nstrumentation and at our Hoddesdon location in rural
Hertfordshire we manaufacture the world famous range of Tert tordshire we manulacture the world famous range of
Telequipment oscill ${ }^{\text {ascopes. }}$.
To keep our products to the highest possible standard we are looking for Technicians/Engineers quallfied to a tleast
ONC with two years' test and fault ininding experience to ONC with two years' test and fault tinding experience to
component level, an enquiring mind and the ability to workon their own initiative.
Excellent salaries, profit sharing, generous holidays, sick Excellent salaries, profit sharing, generous holidays, sick
pay, free life assurance, non-contributory pension and
relocation expenses where apoplicable all add up to make Tektronix the best break you've ever had. To get all the facts phone Norman Spreckley on

Hoddesdon 67151 or write to him at Tektronix UK Lto
Pindar Road, Hoddesdon, Herts.

 Vavke Allite induciors, Amplifier 10100 volt line transtormers strom a fev
 300 watis or more.
 TRANSFFRMERS. Many

SOWTER TRANSFORMERS
A. SOWTER LTD. (Extechishbed 1941). Ros. No. England 303990

 2-2

Max iuw wivi
2uso inioz

FOR

CLASSIFIED ADVERTISING RING

NEIL McDONNELL ON 01-261 8508

PCBB AND SYSTEMS ASSEMBLY. LARGE AND SMALL BATCHES BACK PLANE, PROTOTYPE AND PRODUCTION WIRING TO
SPECIFICATION . PROMPT QUOTATIONS AND DELIVERIES Park Farm-Hoxne-Diss-Norfolk. Tel: Hoxne 520
 \star Ouick response to demand
\star Expert hand soldering
 SEAHORSE ELECTRONICS LTO.
STOM
 Ta. Runcom (09285) 75950 -

Capacity Available CONTROL PANEL CAPACITY
 Electronic/Electrical Equipment manufactured to specifications designed and manufactured to meet ourr requirements. - Delivery dates always adhered to
 Do not hesitate to contact us at any time on 0536515424
 Roger Perkis
 Roper Ind. Systoms Cromwell Road, Kettering

CLASSIFIED ADVERTISEMIENTS

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9 LU
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate $£ 1.50$ PER LINE. Average six words per
line. Minimum THREE lines.
- Name and address to be included in charge if used
- Box No. Allow two words plus 60 p.
- Box No. Allow two words plus 60p.
- Cheques. etc.,.payable to "Wireless World" and
crossed "\& Co.." -
\qquad ADDRESS ..
\qquad

please write in block letters. classification
NUMBER OF INSERTIONS

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 133-15

age	PaGE	Page
Acoustical Mfg. Co. Ltd. AEL Crystals	GEC Semiconductors GEC M-O Valv	Quantum Electronics
		Racal Recorders
Ambit International	Hameg Lld	Radio Components specialists
	Hart Electronics 114, 116	Radio Shack 104
Aspen Eleetronics itd. ${ }^{87}$	Henry's Radio 110, 116, 120	${ }_{\text {Ralfe }}^{\text {R.C. } \text { P. Electronics }}$........................ 118
${ }_{\text {Astra Elec. Comps }}^{\text {Avo Ltd }}$............................ ${ }^{110}$		R.S.T. Valves 115
Barrie Electronics Ltd.	Electronics Ltd	
ver iv	Industrial Tape Applications ${ }_{102}^{117,128} 128$	Sabtronics International 65
onductors Ltd. 101	${ }_{\text {Integrex Ldd }}$ Intel Electronic Comps. Litd. 102,103	Sandwell Plant Ltd. 107
Bull J. .athenoti.................. ${ }_{26}^{123}$	Intersil	
Butterworth \& Co	ITF /IEA	${ }_{\text {Science of Cambridge }}^{\text {Scopex Instruments } \text { Ltd. }}$.................... 113
Cambridge Learning 4,5		Serviec Trading _-1..................... ${ }_{36}^{105}$
${ }_{\text {Carston Electronics }}^{\text {Ctd. }}$ Carter Associates	K.AC. Electronic Investment ${ }_{\text {K }}^{106}$	Softy Ltd. ${ }^{98}$
Catronics 107	Kelsey Acoustics Ltdd 122	
Chiltern Electronics 128	Kirkham Amplifier	Sota Communicatio
Chiltmead Ltd. . .7........................ 119		ern Electronics 106
Cintec 132	Langrex 115	Star Device
Circard No. 5 123	Larsholt Electronics ${ }^{106}$	Strumech Eng.
Colomor (Electronics) Ltd. 116	Lascar Electronics	Strut Elec. \& Mech'' Engrs. Litd. 98
Communications' 80 110	Legal Ad	
	Levell Llectronics Ltd. ${ }^{18}$	Swanley Electronics Ltd. ${ }^{122}$
Continental Specialities	Lindos Electronics \ldots................... ${ }_{34}^{28}$	Symot Ltd. 106
Crimson Elektrik		
Cropico Ltd.		y Computer 8,9
		ndy Corporation ${ }^{20}$
Display Electronics 116	Marshall, A. \& Sons (London) Litd.	Tektronix (U.K.) Ltd. ${ }^{\text {cover ii }}$
Drake Transformers ${ }_{\text {den }}$	Medelec	Teleradio Electronics ${ }^{106}$
	Microcircuits Ltd. Milward GF. ${ }_{120}^{120}$	Texas Instruments
Eagle Internatinal	Multicore Solders Ltd. Cover iv	
		Varadio Lt
	Newbear Computer Store	
Electrometric Services		Vero Speed 128
	OIson Electronics	Vero Systems
		West Hyde Developments Ltd 104
Faircrest Eng.		Wilmslow Audio
Farnell Instruments L	Powerrran Electronics Precision Instruments.	
	Pyrdex Components 34	Z. \& I. Aero Services Ltd
OVERSEAS ADVERTISEMENT AGENTS: France \& Belgium: Norbert Hellin, 50 R̄ue de Chemin Veat, F-9100, Boulogne, Paris	Japan: Mr. Inatsuki, Trade Media - IBPA JJapan). B.212. 	Mr Jack Meniel: The Farley Co. Suite 650 . fanna Buididing At/anta, Georgia 30305. Telephone: (404) 2377432. Mike Loughlin, IPC Business Press, 15055 , Memorial Ste 119 , Houston, Texas 77079 - Telephone (713) 7838673
Hungary: Mrs Edit Bajusz, Hungexpo Advertising Agency Telephone: 225008 - Telex: Budapest 22-4525 INTFOIRE	United States of America: Ray Bannes, IPC Business Press. 205 ,	
	Wacker Drive, Chicago, Illinois 60601 - Telephone: (312) 63074	Canada: Mr Colin H . MacCulloch. International Advertising onsultants Lid., 915 Cariton Tower, 2 Cariton Street. Toronto - Telephone: (416) 3642269
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero. Via Mantegna 6 . 20154 Milan	Mir Victor A. J. Juct, Elmatex International, P.O. Box 34607 . Los Angeles Caif. 90034 . USA-Telephone (213)	

Wireless World, January 1980

All prices shown ạre recommended retail, inc. VAT.

Bib
In difficulty send direct, plus 20 p P \& P. Send S.A.E. for free copy of colour catalogue detailing complete range. Bib Hi-Fi Accessories Limited, Kelsey House, Wood Lane End, Hemel Hempstead, Herts., HP2 4RO.

For single-play turntables. Removes harmful dust to protect records and stylii. Finished*in chrome, bright anodised aluminium and shiny black Ref. 42.
£2.99, inc. VAT

Record Valet

Soft bristles on leading edge remove dust and humid velvet pad collects particles. This advanced cleaner is engineered in a fine shiny black finish and is.supplied with dust cover and a 22 ml . bottle of anti-static cleaner. Ref. 47

[^0]:
 -

[^1]: T

[^2]: Test procedure
 Signal generator on $10,700 \mathrm{kHz}$ connected "IF in" terminal post
 A.g.c. volts. AVO 8 on $10 \mathrm{Vd.c.c}$ range.
 Audio output, AVO 8 on 100 mA a.c. ra
 3. Audio output, AVO 8 on 100 mA a.c. ra
 4. Source rail, 3.3 volts. 2.71 BZY 8 zen
 5. R., set at mid position 110 ohms).

[^3]: Complete, detach and mail to
 Tony Davies Communication
 /o Industrial and Trade Fairs Ltd, Radslifte House
 lis 0210507 2BG, England.

